Antibody Engineering for the Development of Therapeutic Antibodies

  • Kim, Sang Jick (Laboratory of Antibody Engineering, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Youngwoo (Laboratory of Antibody Engineering, Korea Research Institute of Bioscience and Biotechnology) ;
  • Hong, Hyo Jeong (Laboratory of Antibody Engineering, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2005.08.16
  • Accepted : 2005.08.18
  • Published : 2005.08.31

Abstract

Therapeutic antibodies represent one of the fastest growing areas of the pharmaceutical industry. There are currently 19 monoclonal antibodies in the market that have been approved by the FDA and over 150 in clinical developments. Driven by innovation and technological developments, therapeutic antibodies are the second largest biopharmaceutical product category after vaccines. Antibodies have been engineered by a variety of methods to suit a particular therapeutic use. This review describes the structural and functional characteristics of antibody and the antibody engineering for the generation and optimization of therapeutic antibodies.

Keywords

Acknowledgement

Supported by : Ministry of Health and Welfare of Korea

References

  1. Adams, G. P., Schier, R., Marshall, K., Wolf, E. J., McCall, A. M., et al. (1998) Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. 58, 485–490
  2. Barbas, III C. F., Bain, J. D., Hoekstra, D. M., and Lerner, R. A. (1992) Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc. Natl. Acad. Sci. USA 89, 4457–4461
  3. Barbas, III C. F., Hu, D., Dunlop, N., Sawyer, L., Cababa, D., et al. (1994) In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. Proc. Natl. Acad. Sci. USA 91, 3809–3813
  4. Bell, M. and Kamm, M. (2000) The clinical role of anti-TNFa antibody treatment in Crohn's disease. Aliment. Phamacol. Ther. 14, 501-514 https://doi.org/10.1046/j.1365-2036.2000.00777.x
  5. Bera, T. K., Onda, M., Brinkmann, U., and Pastan, I. (1998) A bivalent disulfide-stabilized fv with improved antigen binding to erbb2. J. Mol. Biol. 281, 475–483 https://doi.org/10.1006/jmbi.1998.1948
  6. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., et al. (1988) Single-chain antigen-binding proteins. Science 242, 423–426 https://doi.org/10.1126/science.3140379
  7. Boder, E. T. and Wittrup, K. D. (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557 https://doi.org/10.1038/nbt0697-553
  8. Brinkmann, U., Reiter, Y., Jung, S. H., Lee, B., and Pastan, I. (1993) A recombinant immunotoxin containing a disulfidestabilized Fv fragment Proc. Natl. Acad. Sci. USA 90, 7538– 7542
  9. Bruggemann, M. and Taussig, M. J. (1997) Production of human antibody repertoires in transgenic mice. Curr. Opin. Biotechnol. 8, 455–458 https://doi.org/10.1016/S0958-1669(97)80068-7
  10. Chames, P., Willemsen, R. A., Rojas, G., Dieckmann, D., Rem, L., et al. (2002) TCR-like human antibodies expressed on human CTLs mediate antibody affinity-dependent cytolytic activity. J. Immunol. 169, 1110–1118
  11. Chang, C. H., Sharkey, R. M., Rossi, E. A., Karacay, H., McBride, W., et al. (2002) Molecular advances in pretargeting radioimunotherapy with bispecific antibodies. Mol. Cancer Ther. 1, 553–563
  12. Chapman, A. P. (2002) PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev. 54, 531–545 https://doi.org/10.1016/S0169-409X(02)00026-1
  13. Chapman, A. P., Antoniw, P., Spitali, M., West, S., Stephens, S., et al. (1999) Therapeutic antibody fragments with prolonged in vivo half-lives. Nat. Biotechnol. 17, 780–783 https://doi.org/10.1038/11717
  14. Chowdhury, P. S. (2003) Engineering hot spots for affinity enhancement of antibodies. Methods Mol. Biol. 2007, 179–196
  15. Chowdhury, P. S. and Pastan, I. (1999) Improving antibody affinity by mimicking somatic hypermutation in vitro. Nat. Biotechnol. 17, 568–572 https://doi.org/10.1038/9872
  16. Colcher, D., Pavlinkova, G., Beresford, G., Booth, B. J., Choudhury, A., et al. (1998) Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q. J. Nucl. Med. 42, 225–241
  17. Daeron, M. (1997) Fc receptor biology. Ann. Rev. Immunol. 15, 203–234 https://doi.org/10.1146/annurev.immunol.15.1.203
  18. Dall'Acqua, W. F., Woods, R. M., Ward, E. S., Palaszynski, S. R., Patel, N. K., et al. (2002) Increasing the affinity of a human IgG1 for the neonatal Fc receptor: Biological consequences. J. Immunol. 169, 5171–5180
  19. Dall'Acqua, W. F., Damschroder, M. M., Zhang, J., Woods, R. M., Widjaja, L., et al. (2005) Antibody humanization by framework shuffling. Methods. 36, 43-60 https://doi.org/10.1016/j.ymeth.2005.01.005
  20. Duenas, M. and Borrebaeck, C. A. (1994) Clonal selection and amplification of phage displayed antibodies by linking antigen recognition and phage replication. Bio-Technology 12, 999–1002
  21. Fishwild, D. M., O'Donnell, S. L., Bengoechea, T., Hudson, D. V., Harding, F., et al. (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat. Biotechnol. 14, 845–851 https://doi.org/10.1038/nbt0796-845
  22. Francisco, J. A., Campbell, R., Iverson, B. L., and Georgiou, G. (1993) Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc. Natl. Acad. Sci. USA 90, 10444–10448
  23. Fuchs, P., Breitling, F., Dubel, S., Seehaus, T., and Little, M. (1991) Targeting recombinant antibodies to the surface of Escherichia coli: fusion to a peptidoglycan associated lipoprotein. Bio-Technology 9, 1369–1372
  24. Gelderman, K. A., Tomlinson, K. S., Ross, G. D., and Gorter, A. (2004) Complement function in mAb-mediated cancer immunotherapy. Trends Immunol. 25, 158–164 https://doi.org/10.1016/j.it.2003.10.011
  25. Georgiou, G., Stathopoulos, C., Daugherty, P. S., Nayak, A. R., Iverson, B. L., et al. (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15, 29–34
  26. Glaser, S. M., Yelton, D. E., and Huse, W. D. (1992) Antibody engineering by codon-based mutagenesis in a filamentous phage vector system. J. Immunol. 149, 3903–3913
  27. Golay, J., Zaffaroni, L., Vaccari, T., Lazzari, M., Borleri, G. M., et al. (2000) Biologic response of B lymphoma cells to anti- CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis Blood 95, 3900–3908
  28. Griffiths, A. D. and Duncan, A. R. (1998) Strategies for selection of antibodies by phage display. Curr. Opin. Biotechnol. 9, 102–108 https://doi.org/10.1016/S0958-1669(98)80092-X
  29. Griffiths, A. D., Williams, S. C., Hartley, O., Tomlinson, I. M., Waterhouse, P., et al. (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260
  30. Gunneriusson, E., Samuelson, P., Uhlen, M., Nygren, P. A., and Stahl, S. (1996) Surface display of a functional single-chain Fv antibody on staphylococci. J. Bacteriol. 178, 1341–1346
  31. Hanes, J. and Pluckthun, A. (1999) In vitro selection methods for screening of peptide and protein libraries. Curr. Top. Microbiol. Immunol. 243, 107–122
  32. Hanes, J., Jermutus, L., Weber-Bornhauser, S., Bosshard, H. R., and Pluckthun, A. (1998) Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc. Natl. Acad. Sci. USA 95, 14130–14135
  33. Hanes, J., Schaffitzel, C., Knappik, A., and Plückthun, A. (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18, 1287-1292 https://doi.org/10.1038/82407
  34. Hassan, R., Lerner, M. R., Benbrook, D., Lightfoot, S. A., Brackett, D. J., et al. (2002) Antitumor activity of SS (dsFv) PE38 and SS1(dsFv)PE38, recombinant antimesothelin immunotoxins against human gynecologic cancers grown in organotypic culture in vitro. Clin. Cancer Res. 8, 3520–3526
  35. Hawkins, R. E., Russell, S. J., and Winter, G. (1992) Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mol. Biol. 226, 889-896 https://doi.org/10.1016/0022-2836(92)90639-2
  36. He, M. and Taussig, M. J. (1997) Antibodyribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res. 25, 5132–5134 https://doi.org/10.1093/nar/25.24.5132
  37. Hinton, P. R., Johlfs, M. G., Xiong, J. M., Hanestad, K., Ong, K. C., et al. (2003) Engineered human IgG antibodies with longer serum half-lives in primates. J. Biol. Chem. 279, 6213–6216 https://doi.org/10.1074/jbc.C300470200
  38. Ho, M., Kreitman, R. J., Onda, M., and Pastan, I. (2005) In vitro antibody evolution targeting germline hot spots to increase activity of an anti-CD22 immunotoxin. J. Biol. Chem. 280, 607–617
  39. Holliger, P., Prospero, T., and Winter, G. (1993) 'Diabodies': Small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90, 6444–6448
  40. Hoogenboom, H. R. and Winter, G. (1992) Bypassing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. 227, 381–388 https://doi.org/10.1016/0022-2836(92)90894-P
  41. Hoogenboom, H. R., de Bruine, A. P., Hufton, S. E., Hoet, R. M., Arends, J. W., et al. (1998) Antibody phage display technology and its applications. Immunotechnology 4, 1–20 https://doi.org/10.1016/S1380-2933(98)00007-4
  42. Huls, G. A., Heijnen, I. A., Cuomo, M. E., Koningsberger, J. C., Wiegman, L., et al. (1999) A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments. Nat. Biotechnol. 17, 276–281 https://doi.org/10.1038/7023
  43. Hu, S., Shively, L., Raubitschek, A., Sherman, M., Williams, L. E., et al. (1996) Minibody: A novel engineered anticarcinoembryonic antigen antibody fragment (single-chain Fv-C(H)3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 56, 3055–3061
  44. Hwang, W. Y. K. and Foote, J. (2005) Immunogenicity of engineered antibodies. Methods 36, 3-10 https://doi.org/10.1016/j.ymeth.2005.01.001
  45. Hwang, W. Y. K., Almagro, J. C., Buss, T. N., Tan, P., and Foote, J. (2005) Use of human germline genes in a CDR homologybased approach to antibody humanization. Methods 36, 35-42 https://doi.org/10.1016/j.ymeth.2005.01.004
  46. Idusogie, E. E., Presta, L. G., Gazzano-Santoro, H., Totpal, K., Wong, P. Y., et al. (2000) Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc. J. Immunol. 164, 4178–4184
  47. Idusogie, E. E., Wong, P. Y., Presta, L. G., Gazzano-Santoro, H., Totpal, K., et al. (2001) Engineered antibodies with increased activity to recruit complement. J. Immunol. 166, 2571–2575
  48. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S., and Winter, G. (1996) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522-525 https://doi.org/10.1038/321522a0
  49. Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S., and Foeller, C. (1991) Sequences of Proteins of Immunological Interests, 5th ed., United States Public Health Service, National Institutes of Health, Bethesda
  50. Kashmiri, S. V., De Pascalis, R., Gonzales, N. R., and Schlom, J. (2005) SDR grafting--a new approach to antibody humanization. Methods. 36, 25-34 https://doi.org/10.1016/j.ymeth.2005.01.003
  51. King, D. J., Turner, A., Farnsworth, A. P., Adair, J. R., Owens, R. J., et al. (1994) Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res. 54, 6176–6185
  52. Klein, M., Haeffner-Cavaillon, N., Isenman, D. E., Rivat, C., Navia, M. A., et al. (1981) Expression of biological effector functions by immunoglobulin G molecules lacking the hinge region. Proc. Natl. Acad. Sci. USA 78, 524–528
  53. Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., et al. (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs with randomized trinucleotides. J. Mol. Biol. 296, 57– 86 https://doi.org/10.1006/jmbi.1999.3444
  54. de Kruif, J., Boel, E., and Logtenberg, T. (1995) Selection and application of human single chain Fv antibody fragments from a semi-synthetic phage antibody display library with designed CDR3 regions. J. Mol. Biol. 248, 97–105 https://doi.org/10.1006/jmbi.1995.0204
  55. Kuan, C. T., Wikstrand, C. J., Archer, G., Beers, R., Pastan, I., et al. (2000) Increased binding affinity enhances targeting of glioma xenografts by EGFRVIII-specific scFV. Int. J. Cancer 88, 962–969 https://doi.org/10.1002/1097-0215(20001215)88:6<962::AID-IJC20>3.0.CO;2-U
  56. Kuby, J. (1997) Immunology. New York: Freeman. p. 664
  57. Lazar, G., Chirino, A. J., Dang, W., Desjarlais, J. R., Doberstein, S. K., et al. Int. Pub. No. WO 2004/029207 A2
  58. Lund, J., Takahashi, N., Pound, J. D., Goodall, M., and Jefferis, R. (1996) Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human Fcγ receptor I and influence the synthesis of its oligosaccharide chains. J. Immunol. 157, 4963–4969
  59. Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffiths, A. D., et al. (1991) Bypassing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581–597 https://doi.org/10.1016/0022-2836(91)90498-U
  60. Mattheakis, L. C., Bhatt, R. R., and Dower, W. J. (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. USA 91, 9022–9026
  61. Maynard, J. A., Maassen, C. B., Leppla, S. H., Brasky, K., Patterson, J. L., et al. (2002) Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat. Biotechnol. 20, 597–601 https://doi.org/10.1038/nbt0602-597
  62. Medzihradszky, K. F., Spencer, D. I., Sharma, S. K., Bhatia, J., Pedley, R. B., et al. (2004) Glycoforms obtained by expression in Pichia pastoris improve cancer targeting potential of a recombinant antibody-enzyme fusion protein. Glycobiology 14, 27–37 https://doi.org/10.1093/glycob/cwh141
  63. Mendez, M., Green, L., Corvalan, J., Jia, X. C., Maynard-Currie, C., et al. (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat. Genet. 15, 146–156 https://doi.org/10.1038/ng0297-146
  64. Morrison, S. L., Johnson, M. J., Herzenberg, L. A., and Oi, V. T. (1984) Chimeric human antibody molecules; mouse antigenbinding domains with human constant region domains. Proc. Natl Acad. Sci. USA 21, 6851-6855
  65. Neal, Z. C., Yang, J. C., Rakhmilevich, A. L., Buhtoiarov, I. N., Lum, H. E., et al. (2004) Enhanced activity of hu14.18-IL2 immunocytokine against murine NXS2 neuroblastoma when combined with interleukin 2 therapy. Clin. Cancer Res. 10, 4839–4847 https://doi.org/10.1158/1078-0432.CCR-03-0799
  66. Neuberger, M. S., Ehrenstein, M. R., Klix, N., Jolly, C. J., Yelamos, J., et al. (1998) Monitoring and interpreting the intrinsic features of somatic hypermutation. Immunol. Rev. 162, 107–116 https://doi.org/10.1111/j.1600-065X.1998.tb01434.x
  67. Nissim, A., Hoogenboom, H. R., Tomlinson, I. M., Flynn, G., Midgley, C., et al. (1994) Antibody fragments from a 'single pot' phage display library as immunochemical reagents. EMBO J. 13, 692–698
  68. Roberts, R. and Szostak, J. W. (1997) RNApeptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12297–12302
  69. Salvatore, G., Beers, R., Margulies, I., Kreitman, R. J., and Pastan, I. (2002) Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. Clin. Cancer Res. 8, 995–1002
  70. Santimaria, M., Moscatelli, G., Viale, G. L., Giovannoni, L., Neri, G., et al. (2003) Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin. Cancer Res. 9, 571–579
  71. Schier, R., Bye, J., Apell, G., McCall, A., Adams, G. P., et al. (1996a) Isolation of high-affinity monomeric human anti-cerbB- 2 single chain Fv using affinity-driven selection. J. Mol. Biol. 255, 28–43 https://doi.org/10.1006/jmbi.1996.0004
  72. Schier, R., McCall, A., Adams, G. P., Marshall, K. W., Merritt, H., et al. (1996b) Isolation of picomolar affinity anti-c-erbB- 2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol. 263, 551–567 https://doi.org/10.1006/jmbi.1996.0598
  73. Sensel, M. G., Kane, L. M., and Morrison, S. L. (1977) Amino acid differences in the N-terminus of CH2 influence the relative abilities of IgG2 and IgG3 to active complement. Mol. Immunol. 34, 1019–1029
  74. Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., et al. (2001) High resolution mapping of the binding site on human IgG1 for $Fc{\gamma}RI,\;Fc{\gamma}RII,\;Fc{\gamma}RIII$, and FcRn and design of IgG1 variants with improved binding to the $Fc{\gamma}$R. J. Biol. Chem. 276, 6591–6604 https://doi.org/10.1074/jbc.M009483200
  75. Shields, R. L., Lai, J., Keck, R., O'Connell, L. Y., Hong, K., et al. (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcΓRIII and antibodydependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 https://doi.org/10.1074/jbc.M202069200
  76. Shinkawa, T., Nakamura, K., Yamane, N., Shoji-Hosaka, E., Kanda, Y., et al. (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473 https://doi.org/10.1074/jbc.M210665200
  77. Smallshaw, J. E., Ghetie, V., Rizo, J., Fulmer, J. R., Trahan, L. L., et al. (2003) Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice. Nat. Biotechnol. 21, 387–389 https://doi.org/10.1038/nbt800
  78. Spada, S., Krebber, C., and Pluckthun, A. (1997) Selectively infective phages (SIP). Biol. Chem. 378, 445–456
  79. Stavenhagen, J. and Vijh, S., Int. Pub. No. WO 2004/063351 A2
  80. Tao, M. H., Canfield, S. M., and Morrison, S. L. (1991) The differential ability of human IgG1 and IgG4 to activate complement is determined by the COOH-terminal sequence of the CH2 domain. J. Exp. Med. 173, 1025–1028 https://doi.org/10.1084/jem.173.4.1025
  81. Tao, M. H., Smith, R. I., and Morrison, S. L. (1993) Structural features of human immunoglobulin G that determine isotypespecific differences in complement activation. J. Exp. Med. 178, 661–667 https://doi.org/10.1084/jem.178.2.661
  82. Treon, S. P., Mitsiades, C., Mitsiades, N., Young, G., Doss, D., et al. (2001) Tumor cell expression of CD59 is associated with resistance to CD20 serotherapy in patients with B-cell malignancies. J. Immunother. 24, 263–271 https://doi.org/10.1097/00002371-200105000-00011
  83. Tsurushita, N., Hinton, P. R., and Kumar, S. (2005) Design of humanized antibodies: from anti-Tac to Zenapax. Methods 36, 69-83 https://doi.org/10.1016/j.ymeth.2005.01.007
  84. Tsutsumi, Y., Onda, M., Nagata, S., Lee, B., Kreitman, R. J., et al. (2000) Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proc. Natl. Acad. Sci. USA 97, 8548–8553
  85. Valone, F. H., Kaufman, P. A., Guyre, P. M., Lewis, L. D., Memoli, V. J., et al. (1995a) Phase Ia/Ib trial of bispecific antibody MDX-210 in patients with advanced breast or ovarian cancer that overexpresses the proto-oncogene HER-2/neu. J. Clin. Oncol. 13, 2281–2292
  86. Valone, F. H., Kaufman, P. A., Guyre, P. M., Lewis, L. D., Memoli, V. J., et al. (1995b) Clinical trials of bispecific antibody MDX-210 in women with advanced breast or ovarian cancer that overexpresses HER-2/neu. J. Hematother. 4, 471– 475
  87. Vaughan, T. J., Williams, A. J., Pritchard, K., Osbourn, J. K., Pope, A. R., et al. (1996) Human antibodies with subnanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314 https://doi.org/10.1038/nbt0396-309
  88. Wabl, M., Cascalho, M., and Steinberg, C. (1999) Hypermutation in antibody affinity maturation. Curr. Opin. Immunol. 11, 186–189 https://doi.org/10.1016/S0952-7915(99)80002-8
  89. Ward, E. S., Gussow, D., Griffiths, A. D., Jones, P. T., and Winter, G. (1989) Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341, 544–546 https://doi.org/10.1038/341544a0
  90. de Wildt, R. M., Finnern, R., Ouwehand, W. H., Griffiths, A. D., van Venrooij, W. J., et al. (1996) Characterization of human variable domain antibody fragments against the U1 RNAassociated A protein, selected from a synthetic and patientderived combinatorial V gene library. Eur. J. Immunol. 26, 629–639
  91. Woodle, M. C. and Lasic, D. D. (1992) Sterically stabilized liposomes. Biochim. Biophys. Acta 1113, 171–199
  92. Wright, A. and Morrison, S. L. (1998) Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells. J. Immunol. 160, 3393– 3402
  93. Wu, A. M. (2004) Engineering multivalent antibody fragments for in vivo targeting. Methods Mol. Biol. 248, 209–225
  94. Wu, A. M. and Yazaki, P. J. (2000) Designer genes: recombinant antibody fragments for biological imaging. Q. J. Nucl. Med. 44, 268–283
  95. Wu, H., Beuerlein, G., Nie, Y., Smith, H., Lee, B. A., et al. (1998) Stepwise in vitro affinity maturation of Vitaxin, an $\alpha$(v)$\beta$3-specific humanized mAb. Proc. Natl. Acad. Sci. USA 95, 6037–6042
  96. Wu, H., Nie, Y., Huse, W. D., and Watkins, J. D. (1999) Humanization of a murine monoclonal antibody by simultaneous optimization of framework and CDR residues. J. Mol. Biol. 294, 151–162 https://doi.org/10.1006/jmbi.1999.3141
  97. Yang, W. P., Green, K., Pinz-Sweeney, S., Briones, A. T., Burton, D. R., et al. (1995) CDR Walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol. 254, 392–403 https://doi.org/10.1006/jmbi.1995.0626
  98. Yang, X. D., Corvalan, J. R., Wang, P., Roy, C. M., and Davis, C. G. (1999a) Fully human antiinterleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J. Leukocyte Biol. 66, 401–410
  99. Yang, X. D., Jia, X. C., Corvalan, J. R., Wang, P., Davis, C. G., et al. (1999b) Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res. 59, 1236–1243
  100. Zhang, M. Y., Shu, Y., Rudolph, D., Prabakaran, P., Labrijn, A. F., et al. (2004) Improved breadth and potency of an HIV-1- neutralizing human single-chain antibody by random mutagenesis and sequential antigen panning. J. Mol. Biol. 335, 209– 219 https://doi.org/10.1016/j.jmb.2003.11.037