Radioimmunotherapy (I): Development of Radioimmunoconjugates

방사면역치료(I): 방사면역접합체 개발

  • Choi, Tae-Hyun (Nuclear Medicine Laboratory, Korean Institute of Radiological & Medical Science) ;
  • Lim, Sang-Moo (Nuclear Medicine Laboratory, Korean Institute of Radiological & Medical Science)
  • 최태현 (원자력의학원 핵의학연구실) ;
  • 임상무 (원자력의학원 핵의학연구실)
  • Published : 2006.04.29

Abstract

Monoclonal antibodies are designed to bind specifically to certain antigen, give therapeutic effect to the target and to be produced in large scale with homogeneity. The monoclonal antibodies conjugated with radionuclide can deliver therapeutic irradiation to the target, and showed successful results in certain malignancies, which is known as radioimmunotherapy. The target-to-background ratio depends on the antigen expression in the target and normal tissues, which is related to the therapeutic efficacy and toxicity in radioimmunotherapy. For the solid tumor beta-ray energy should be high, but lower beta energy is better for the hematological malignancies. I-l31 is widely used in thyroid cancer with low cost and high availability. Labeling monoclonal antibody with I-131 is relatively simple and reproducible. Some preclinical data for the I-131 labeled monoclonal antibodies including acute toxicity and efficacy are available from already published literatures in KIRAMS, physician sponsored clinical trial protocols using Rituximab, KFDA approved anti-CD20 chimeric monoclonal antibody and I-131 were approved by KFDA and currently are ongoing.

Keywords

References

  1. Stone MJ. Monoclonal antibodies in the prehybridoma era: a brief historical perspective and personal reminiscence. Clin Lymphoma 2001;2:148-54 https://doi.org/10.3816/CLM.2001.n.020
  2. Wurflein D, Dechant M, Stockmeyer B, Tutt AL, Hu P, Repp R, et al. Evaluating antibodies for their capacity to induce cell- mediated lysis of malignant B cells. Cancer Res 1998;58:3051-8
  3. Macklis RM, Kaplan WD, Ferrara JL, Kinsey BM, Kassis AIBurakoff SJ Biodistribution studies of anti-Thy 1.2 IgM immunoconjugates: implications for radioimmunotherapy. Int J Radiat Oncol Biol Phys 1988;15:383-9 https://doi.org/10.1016/S0360-3016(98)90020-7
  4. Nishihara T, Sawada T, Yamamoto A, Yamashita Y, Ho JJ, Kim YS, et al. Antibody-dependent cytotoxicity mediated by chimeric monoclonal antibody Nd2 and experimental immunotherapy for pancreatic cancer. Jpn J Cancer Res 2000;91:817-24 https://doi.org/10.1111/j.1349-7006.2000.tb01019.x
  5. Buske C, Dreyling M. Unterhalt MHiddemann W [Monoclonal antibody therapy for malignant lymphoma]. Med Klin (Munich) 2005;100:14-24 https://doi.org/10.1007/s00063-005-1115-0
  6. Buchsbaum DJ, Lawrence TS. New trends in the use of radioimmunoconjugates for the therapy of cancer. Targeted Diagn Ther 1990;3:215-55
  7. DeNardo GL, Raventos A, Hines HH, Scheibe PO, Macey DJ, Hays MT, et al. Requirements for a treatment planning system for radioimmunotherapy. Int J Radiat Oncol Biol Phys 1985;11:335-48 https://doi.org/10.1016/0360-3016(85)90156-7
  8. Fink-Bennett DM, Thomas K. $^{90}$Y-ibritumomab tiuxetan in the treatment of relapsed or refractory B-cell non-Hodgkin's lymphoma. J Nucl Med Technol 2003;31:61-8; quiz 69-70
  9. Goldenberg DM. The role of radiolabeled antibodies in the treatment of non-Hodgkin's lymphoma: the coming of age of radioimmunotherapy. Crit Rev Oncol Hematol 2001;39:195-201 https://doi.org/10.1016/S1040-8428(01)00108-1
  10. Wiseman GA, White CA, Stabin M, Dunn WL, Erwin W, Dahlbom M, et al. Phase I/II $^{90}$Y-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractory non-Hodgkin's lymphoma. Eur J Nucl Med 2000;27:766-77 https://doi.org/10.1007/s002590000276
  11. Gregory SA. Selecting patients for treatment with $^{90}$Y ibritumomab tiuxetan (Zevalin). Semin Oncol 2003;30:17-22
  12. Reilly RM, Sandhu J, Alvarez-Diez TM, Gallinger S, Kirsh J, Stern H. Problems of delivery of monoclonal antibodies. Pharmaceutical and pharmacokinetic solutions. Clin Pharmacokinet 1995;28:126-42 https://doi.org/10.2165/00003088-199528020-00004
  13. Lee YC, Washburn LC, Sun TT, Byrd BL, Crook JE, Holloway EC, et al. Radioimmunotherapy of human colorectal carcinoma xenografts using $^{90}$Y-labeled monoclonal antibody CO17-1A prepared by two bifunctional chelate techniques. Cancer Res 1990;50:4546-51
  14. Mirick GR, Bradt BM, Denardo SJ, Denardo GL. A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words. Q J Nucl Med Mol Imaging 2004;48:251-7
  15. van Laarhoven HW, Punt CJ. Systemic treatment of advanced colorectal carcinoma. Eur J Gastroenterol Hepatol 2004;16:283-9
  16. Harris M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 2004;5:292-302 https://doi.org/10.1016/S1470-2045(04)01467-6
  17. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol 2005;23:1147-57 https://doi.org/10.1038/nbt1137
  18. Cilley J, Winter JN. Radioimmunotherapy and autologous stem cell transplantation for the treatment of B-cell lymphomas. Haematologica 2006;91:113-20
  19. Stern M, Herrmann R. Overview of monoclonal antibodies in cancer therapy: present and promise. Crit Rev Oncol Hematol 2005;54: 11-29 https://doi.org/10.1016/j.critrevonc.2004.10.011
  20. Lewington V. Development of $^{131}$I-tositumomab. Semin Oncol 2005;32:S50-6
  21. Illidge TM, Brock S. Radioimmunotherapy of cancer: using monoclonal antibodies to target radiotherapy. Curr Pharm Des 2000;6:1399-418 https://doi.org/10.2174/1381612003399257
  22. Illidge TM, Johnson PW. The emerging role of radioimmunotherapy in haematological malignancies. Br J Haematol 2000;108:679-88 https://doi.org/10.1046/j.1365-2141.2000.01926.x
  23. Anderson WT, Strand M. Radiolabeled antibody: iodine versus radiometal chelates. NCI Monogr 1987;149-51
  24. Kobayashi H, Kao CH, Kreitman RJ, Le N, Kim MK, Brechbiel MW, et al. Pharmacokinetics of $^{111}$In- and $^{125}$I-labeled antiTac single-chain Fv recombinant immunotoxin. J Nucl Med 2000;41:755-62
  25. DeNardo GL, Kukis DL, Shen S, DeNardo DA, Meares CFDe, Nardo SJ. $^{67}$Cu-versus $^{131}$I-labeled Lym-1 antibody: comparative pharmacokinetics and dosimetry in patients with non-Hodgkin's lymphoma. Clin Cancer Res 1999;5:533-41
  26. Choi CW, Lang L, Lee JT, Webber KO, Yoo TM, Chang HK, et al. Biodistribution of $^{18}$F- and $^{125}$I-labeled anti-Tac disulfide- stabilized Fv fragments in nude mice with interleukin 2 alpha receptor-positive tumor xenografts. Cancer Res 1995;55:5323-9
  27. Behr TM, Sgouros G, Vougiokas V, Memtsoudis S, Gratz S, Schmidberger H, et al. Therapeutic efficacy and dose-limiting toxicity of Auger-electron vs. beta emitters in radioimmunotherapy with internalizing antibodies: evaluation of $^{125}$I- vs. $^{131}$I-labeled CO17-1A in a human colorectal cancer model. Int J Cancer 1998;76:738-48 https://doi.org/10.1002/(SICI)1097-0215(19980529)76:5<738::AID-IJC20>3.0.CO;2-Z
  28. Behr TM, Behe M, Lohr M, Sgouros G, Angerstein C, Wehrmann E, et al. Therapeutic advantages of Auger electron- over beta- emitting radiometals or radioiodine when conjugated to internalizing antibodies. Eur J Nucl Med 2000;27:753-65 https://doi.org/10.1007/s002590000272
  29. Sharkey RM, Behr TM, Mattes MJ, Stein R, Griffiths GL, Shih LB, et al. Advantage of residualizing radiolabels for an internalizing antibody against the B-cell lymphoma antigen, CD22. Cancer Immunol Immunother 1997;44:179-88 https://doi.org/10.1007/s002620050371
  30. DeNardo GL, O'Donnell RT, Shen S, Kroger LA, Yuan A, Meares CF, et al. Radiation dosimetry for $^{90}$Y-2IT-BAD-Lym-1 extrapolated from pharmacokinetics using $^{111}$In-2IT-BAD-Lym-1 in patients with non-Hodgkin's lymphoma. J Nucl Med 2000;41:952-8
  31. Blend MJ, Greager JA, Atcher RW, Brown JM, Brechbiel MW, Gansow OA, et al. Improved sarcoma imaging and reduced hepatic activity with indium-111-SCN-Bz-DTPA linked to MoAb 19-24. J Nucl Med 1988;29:1810-6
  32. DeNardo GL, DeNardo SJ, O'Donnell RT, Kroger LA, Kukis DL, Meares CF, et al. Are radiometal-labeled antibodies better than iodine-131-labeled antibodies: comparative pharmacokinetics and dosimetry of copper-67-, iodine-131-, and yttrium-90-labeled Lym-1antibody in patients with non-Hodgkin's lymphoma. Clin Lymphoma 2000;1:118-26 https://doi.org/10.3816/CLM.2000.n.010
  33. Fani M, Xanthopoulos S, Archimandritis SC, Stratis N, Bouziotis P, Loudos G, et al. Biodistribution and scintigraphic studies of $^{153}$Sm-labeled anti-CEA monoclonal antibody for radioimmunoscintigraphy and radioimmunotherapy. Anticancer Res 2003;23:2195-9
  34. Fani M, Vranjes S, Archimandritis SC, Potamianos S, Xanthopoulos S, Bouziotis P, et al. Labeling of monoclonal antibodies with $^{153}$Sm for potential use in radioimmunotherapy. Appl Radiat Isot 2002;57:665-74 https://doi.org/10.1016/S0969-8043(02)00181-1
  35. Lewis MR, Zhang J, Jia F, Owen NK, Cutler CS, Embree MF, et al. Biological comparison of $^{149}$Pm-, $^{166}$Ho-, and $^{177}$Lu-DOTA-biotin pretargeted by CC49 scFv-streptavidin fusion protein in xenograft- bearing nude mice. Nucl Med Biol 2004;31: 213-23 https://doi.org/10.1016/j.nucmedbio.2003.08.004
  36. Crudo JL, Edreira MM, Obenaus ER, Chinol M, Paganelli Gde Castiglia SG Optimization of antibody labeling with rhenium-188 using a prelabeled MAG3 chelate. Int J Pharm 2002;248:173-82 https://doi.org/10.1016/S0378-5173(02)00434-9
  37. Izard ME, Boniface GR, Hardiman KL, Brechbiel MW, Gansow OA, Walkers KZ. An improved method for labeling monoclonal antibodies with samarium-153: use of the bifunctional chelate 2-(p-isothiocyanatobenzyl)-6-methyldiethylenetriaminepentaacetic acid. Bioconjug Chem 1992;3:346-50 https://doi.org/10.1021/bc00016a015
  38. Stimmel JB, Kull FC, Jr. Samarium-153 and lutetium-177 chelation properties of selected macrocyclic and acyclic ligands. Nucl Med Biol 1998;25:117-25 https://doi.org/10.1016/S0969-8051(97)00151-0
  39. van Gog FB, Visser GW, Stroomer JW, Roos JC, Snow GBvan, Dongen GA. High dose rhenium-186-labeling of monoclonal antibodies for clinical application: pitfalls and solutions. Cancer 1997;80:2360-70 https://doi.org/10.1002/(SICI)1097-0142(19971215)80:12+<2360::AID-CNCR5>3.0.CO;2-F
  40. Visser GW, Gerretsen M, Herscheid JD, Snow GBvan, Dongen G. Labeling of monoclonal antibodies with rhenium-186 using the MAG3 chelate for radioimmunotherapy of cancer: a technical protocol. J Nucl Med 1993;34:1953-63
  41. Yoo TM, Chang HK, Choi CW, Webber KO, Le N, Kim IS, et al. Technetium-99m labeling and biodistribution of anti-TAC disulfide-stabilized Fv fragment. J Nucl Med 1997;38:294-300
  42. Koppe MJ, Bleichrodt RP, Soede AC, Verhofstad AA, Goldenberg DM, Oyen WJ, et al. Biodistribution and therapeutic efficacy of $^{(125/131)}$I-, $^{(186)}$Re-, $^{(88/90)}$Y-, or$^{(177)}$Lu-labeled monoclonal antibody MN-14 to carcinoembryonic antigen in mice with small peritoneal metastases of colorectal origin. J Nucl Med 2004;45: 1224-32
  43. Kraeber-Bodere F, Mishra A, Thedrez P, Faivre-Chauvet A, Bardies M, Imai S, et al. Pharmacokinetics and biodistribution of samarium-153-labelled OC125 antibody coupled to CITCDTPA in a xenograft model of ovarian cancer. Eur J Nucl Med 1996;23:560-7 https://doi.org/10.1007/BF00833392
  44. Najafi A, Alauddin MM, Sosa A, Ma GQ, Chen DC, Epstein AL, et al. The evaluation of $^{186}$Re-labeled antibodies using N2S4 chelate in vitro and in vivo using tumor-bearing nude mice. Int J Rad Appl Instrum B 1992;19:205-12 https://doi.org/10.1016/0883-2897(92)90009-N
  45. Press OW, Rasey J. Principles of radioimmunotherapy for hematologists and oncologists. Semin Oncol 2000;27:62-73
  46. Juweid ME, Sharkey RM, Behr T, Swayne LC, Dunn R, Siegel J, et al. Radioimmunotherapy of patients with small-volume tumors using iodine-131-labeled anti-CEA monoclonal antibody NP-4 F(ab')2. J Nucl Med 1996;37:1504-10
  47. Weadock KS, Sharkey RM, Varga DC, Goldenberg DM. Evaluation of a remote radioiodination system for radioimmunotherapy. J Nucl Med 1990;31:508-11
  48. Behr TM, Gotthardt M, Becker W, Behe M. Radioiodination of monoclonal antibodies, proteins and peptides for diagnosis and therapy. A review of standardized, reliable and safe procedures for clinical grade levels kBq to GBq in the Gottingen/Marburg experience. Nuklearmedizin 2002;41:71-9 https://doi.org/10.1055/s-0038-1625644
  49. Griffiths GL, Goldenberg DM, Knapp FF, Jr., Callahan AP, Chang CH, Hansen HJ. Direct radiolabeling of monoclonal antibodies with generator-produced rhenium-188 for radioimmunotherapy: labeling and animal biodistribution studies. Cancer Res 1991;51:4594-602
  50. John E, Thakur ML, DeFulvio J, McDevitt MR, Damjanov I. Rhenium-186-labeled monoclonal antibodies for radioimmunotherapy: preparation and evaluation. J Nucl Med 1993;34:260-7
  51. Hamby CV, Chinol M, Manzo C, Ferrone S. Purification by affinity chromatography with anti-idiotypic monoclonal antibodies of immunoreactive monoclonal antibodies following labeling with $^{188}$Re. Hybridoma 1997;16:27-31 https://doi.org/10.1089/hyb.1997.16.27
  52. Friedberg JW, Fisher RI. Iodine-131 tositumomab (Bexxar): radioimmunoconjugate therapy for indolent and transformed B-cell non-Hodgkin's lymphoma. Expert Rev Anticancer Ther 2004;4:18-26 https://doi.org/10.1586/14737140.4.1.18
  53. Davies AJ. A review of tositumomab and I(131) tositumomab radioimmunotherapy for the treatment of follicular lymphoma. Expert Opin Biol Ther 2005;5:577-88 https://doi.org/10.1517/14712598.5.4.577
  54. Chinn PC, Leonard JE, Rosenberg J, Hanna N, Anderson DR. Preclinical evaluation of $^{90}$Y-labeled anti-CD20 monoclonal antibody for treatment of non-Hodgkin's lymphoma. Int J Oncol 1999;15:1017-25
  55. DeNardo GL, Mirick GR, Kroger LA, Bradt BM, Lamborn KR, DeNardo SJ. Characterization of human IgG antimouse antibody in patients with B-cell malignancies. Clin Cancer Res 2003;9:4013S-21S
  56. Turner JH, Martindale AA, Boucek J, Claringbold PG, Leahy MF. $^{131}$I-Anti CD20 radioimmunotherapy of relapsed or refractory non-Hodgkins lymphoma: a phase II clinical trial of a nonmyeloablative dose regimen of chimeric rituximab radiolabeled in a hospital. Cancer Biother Radiopharm 2003;18:513-24 https://doi.org/10.1089/108497803322287583
  57. Boucek JA, Turner JH. Validation of prospective whole-body bone marrow dosimetry by SPECT/CT multimodality imaging in $^{(131)}$I-anti-CD20 rituximab radioimmunotherapy of non-Hodgkin's lymphoma. Eur J Nucl Med Mol Imaging 2005;32:458-69 https://doi.org/10.1007/s00259-004-1692-9
  58. Scheidhauer K, Wolf I, Baumgartl HJ, Von Schilling C, Schmidt B, Reidel G, et al. Biodistribution and kinetics of $^{(131)}$I-labelled anti-CD20 MAB IDEC-C2B8 (rituximab) in relapsed non-Hodgkin's lymphoma. Eur J Nucl Med Mol Imaging 2002;29:1276-82 https://doi.org/10.1007/s00259-002-0820-7
  59. Behr TM, Griesinger F, Riggert J, Gratz S, Behe M, Kaufmann CC, et al. High-dose myeloablative radioimmunotherapy of mantle cell non-Hodgkin lymphoma with the iodine-131-labeled chimeric anti-CD20 antibody C2B8 and autologous stem cell support. Results of a pilot study. Cancer 2002;94:1363-72 https://doi.org/10.1002/cncr.10307