• Title/Summary/Keyword: Thematic Maps

Search Result 168, Processing Time 0.027 seconds

Prioritizing Land Purchase in Hwapocheon Wetland Protection Area - Based on Habitat Suitability Index for Flagship Species - (화포천 습지보호지역 토지 매수 우선순위 산정 - 깃대종 서식지 적합성 지수를 고려하여 -)

  • Shim, Yun-Jin;Hong, Jin-Pyo;Lee, Gil-Sang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.2
    • /
    • pp.59-71
    • /
    • 2019
  • This study was conducted to prioritize land purchase in Hwapocheon wetland protection area by reflecting the conservation value of wetlands considering HSI(Habitat Suitability Index) for flagship species. As a result of this study, the flagship species, Oriental White Stork and Been Goose, which can represent the Hwapocheon wetland protection area, were selected through selection criteria and expert feedback. Based on the habitat requirements of the selected flagship species, SI(Suitability Index) for the flagship species was reviewed and the conservation value of wetlands was assessed. The conservation value of the wetlands was divided into five grades from very high to very low. The areas with high conservation value were mainly distributed around wetlands and waters in upstream and downstream of Hwapocheon wetland protection area. The land purchase priorities were divided into five grades by overlapping the thematic maps of the conservation value of wetlands, the economics, and the urgency of restoration. The arable lands which can disrupt wetland ecosystems are analyzed as priority areas where priority purchasing is required. Relatively well-preserved wetlands and areas have low land purchase priorities. This study is meaningful in that biodiversity is considered in land purchase priorities.

West seacoast wetland monitoring using KOMPSAT series imageries in high spatial resolution (고해상도 KOMPSAT 시리즈 이미지를 활용한 서해연안 습지 변화 모니터링)

  • Sunwoo, Wooyeon;Kim, Daeun;Kim, Seongkyun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.429-440
    • /
    • 2017
  • A series of multispectral high-resolution Korean Multi-Purpose Satellite (KOMPSAT) images were analyzed to detect the geographical changes in four different tidal flats in the west coast of South Korea. The method of unsupervised classification was used to generate a series of land use/land cover (LULC) maps from the satellite images, which were used as the input of the temporal trajectory analysis to detect the temporal change of coastal wetlands and its association with natural and anthropogenic activities. The accurately classified LULC maps extracted from the KOMPSAT images indicate that these multispectral high-resolution satellite data is highly applicable to generate good quality thematic maps for extracting wetlands. The result of the trajectory analysis showed that, while the tidal flat area of Gyeonggi and Jeollabuk provinces was estimated to have changed due to tidal effects, the reductive trajectory of the wetland areas belonging to the Saemangeum province was caused by a high degree of human-induced activities including large reclamation and urbanization. The conservation of the Jeungdo Wetland Protected Area in Jeollanam province revealed that the social and environmental policies can effectively protect coastal wetlands from degradation. Therefore, monitoring for wetland change using high resolution KOMPSAT is expected to be useful to coastal environment management and policy making.

A Study on a Recombination Method for the Bottom-up Construction of Spatial Information Products (재조합을 위한 Bottom-up 공간정보제품 제작 방법)

  • Choi, Jae-Yeon;Kim, Eun-Hyung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.185-199
    • /
    • 2017
  • This study is on a recombination method for the construction of spatial information products which demands are unpredictably various. The present production method of digital maps is not flexible enough for their reusability because it is not object-oriented but top-down. Each spatial object needs to have particular attributes to be recombined. The demand changes the production method through the reclassification of data and changing the properties. In a user perspective, the bottom-up method can produce on-demand spatial information products including existing digital maps. The method is derived from case studies and theoretical reviews and compared with the existing production method. In the method spatial information products are reclassified by their geometry objects such as point, line, and polygon, with basic attributes, and other related domain attributes. The geometry objects and domain attributes are connected by adding new attributes for their later relationship and management, which make the recombination possible. To prove its usability of the method it is tested for current and future user demands including the national base map, thematic maps and the future spatial information products.

Application of Multispectral Remotely Sensed Imagery for the Characterization of Complex Coastal Wetland Ecosystems of southern India: A Special Emphasis on Comparing Soft and Hard Classification Methods

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan;Sanjeevi , Shanmugam
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.189-211
    • /
    • 2005
  • This paper makes an effort to compare the recently evolved soft classification method based on Linear Spectral Mixture Modeling (LSMM) with the traditional hard classification methods based on Iterative Self-Organizing Data Analysis (ISODATA) and Maximum Likelihood Classification (MLC) algorithms in order to achieve appropriate results for mapping, monitoring and preserving valuable coastal wetland ecosystems of southern India using Indian Remote Sensing Satellite (IRS) 1C/1D LISS-III and Landsat-5 Thematic Mapper image data. ISODATA and MLC methods were attempted on these satellite image data to produce maps of 5, 10, 15 and 20 wetland classes for each of three contrast coastal wetland sites, Pitchavaram, Vedaranniyam and Rameswaram. The accuracy of the derived classes was assessed with the simplest descriptive statistic technique called overall accuracy and a discrete multivariate technique called KAPPA accuracy. ISODATA classification resulted in maps with poor accuracy compared to MLC classification that produced maps with improved accuracy. However, there was a systematic decrease in overall accuracy and KAPPA accuracy, when more number of classes was derived from IRS-1C/1D and Landsat-5 TM imagery by ISODATA and MLC. There were two principal factors for the decreased classification accuracy, namely spectral overlapping/confusion and inadequate spatial resolution of the sensors. Compared to the former, the limited instantaneous field of view (IFOV) of these sensors caused occurrence of number of mixture pixels (mixels) in the image and its effect on the classification process was a major problem to deriving accurate wetland cover types, in spite of the increasing spatial resolution of new generation Earth Observation Sensors (EOS). In order to improve the classification accuracy, a soft classification method based on Linear Spectral Mixture Modeling (LSMM) was described to calculate the spectral mixture and classify IRS-1C/1D LISS-III and Landsat-5 TM Imagery. This method considered number of reflectance end-members that form the scene spectra, followed by the determination of their nature and finally the decomposition of the spectra into their endmembers. To evaluate the LSMM areal estimates, resulted fractional end-members were compared with normalized difference vegetation index (NDVI), ground truth data, as well as those estimates derived from the traditional hard classifier (MLC). The findings revealed that NDVI values and vegetation fractions were positively correlated ($r^2$= 0.96, 0.95 and 0.92 for Rameswaram, Vedaranniyam and Pitchavaram respectively) and NDVI and soil fraction values were negatively correlated ($r^2$ =0.53, 0.39 and 0.13), indicating the reliability of the sub-pixel classification. Comparing with ground truth data, the precision of LSMM for deriving moisture fraction was 92% and 96% for soil fraction. The LSMM in general would seem well suited to locating small wetland habitats which occurred as sub-pixel inclusions, and to representing continuous gradations between different habitat types.

A Groundwater Potential Map for the Nakdonggang River Basin (낙동강권역의 지하수 산출 유망도 평가)

  • Soonyoung Yu;Jaehoon Jung;Jize Piao;Hee Sun Moon;Heejun Suk;Yongcheol Kim;Dong-Chan Koh;Kyung-Seok Ko;Hyoung-Chan Kim;Sang-Ho Moon;Jehyun Shin;Byoung Ohan Shim;Hanna Choi;Kyoochul Ha
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.71-89
    • /
    • 2023
  • A groundwater potential map (GPM) was built for the Nakdonggang River Basin based on ten variables, including hydrogeologic unit, fault-line density, depth to groundwater, distance to surface water, lineament density, slope, stream drainage density, soil drainage, land cover, and annual rainfall. To integrate the thematic layers for GPM, the criteria were first weighted using the Analytic Hierarchical Process (AHP) and then overlaid using the Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) model. Finally, the groundwater potential was categorized into five classes (very high (VH), high (H), moderate (M), low (L), very low (VL)) and verified by examining the specific capacity of individual wells on each class. The wells in the area categorized as VH showed the highest median specific capacity (5.2 m3/day/m), while the wells with specific capacity < 1.39 m3/day/m were distributed in the areas categorized as L or VL. The accuracy of GPM generated in the work looked acceptable, although the specific capacity data were not enough to verify GPM in the studied large watershed. To create GPMs for the determination of high-yield well locations, the resolution and reliability of thematic maps should be improved. Criterion values for groundwater potential should be established when machine learning or statistical models are used in the GPM evaluation process.

Application of ECVAM as a Indicator for Monitoring National Environment in Korea (국토환경 모니터링 지표로서의 국토환경성평가지도 활용방안)

  • Kim, Eunyoung;Jeon, Seong-Woo;Song, Wonkyong;Kwak, Jaeryun;Lee, June
    • Journal of Environmental Policy
    • /
    • v.11 no.2
    • /
    • pp.3-16
    • /
    • 2012
  • Objectives of the Korean Environmental Conservation Value Assessment Map (ECVAM) is to evaluate environmental value used in comprehensive environmental information in order to encourage eco-friendly land use and management. The first research was conducted in 2001 to establish the evaluation items and the criteria of the ECVAM, and the first nationwide map was established in the period of 2003 to 2005. The maps are updated annually to reflect environmental changes of land. The evaluation items and the criteria have been modified based on feasibility studies to improve the accuracy of the maps. This study re-evaluated the ECVAMs from 2005 to 2010 with criteria used in current environment and analyzed the changes in the area of the maps in 6 years. This is also an investigation on the maps whether they are appropriate as an index for sustainable environmental monitoring. The result shows that the 1st grade level of the ECVAM area with the highest conservation value had been expanding since 2005. These changes were analyzed in terms of updating the 4th Forest Map (2008) produced once every 10 years, reflecting the new legal protected areas such as Baekdudaegan Protected Area(2010), and the environmental/ecological assessment items such as the National Ecological Network (2009). This mean the ECVAM are a monitoring index that integrates individual environmental indexes including the increase of forest age and diameter due to sustainable management of forest areas, and the change of conservation areas. Therefore, ECVAM can be used as a new index integrating national environmental indicators for monitoring changes of national environment and policy. In order to utilize the ECVAM, improving accuracy and reducing renewal cycle time of thematic maps are required.

  • PDF

Foreword to the Special Issue on the 2017 Environmental Spatial Information Research Papers Competition (2017 '친(親)환경도우미' 환경공간정보 우수논문 공모전)

  • Kim, Shin-yup;Lee, Woo-Kyun;Kim, Sang-Wan;Yoon, Jeong-Ho;Lee, Hoonyol;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1041-1046
    • /
    • 2017
  • The Ministry of Environment(ME) has been producing and providing various environmental spatial information including land-cover maps in order to effectively cope with environmental issues. With the advent of the 4th industrial revolution era and the frequent occurrence of environmental disasters, the necessity of combining the environmental spatial information with the newest technology is increasing. By considering the increased necessity, the ME and the Korean Society of Remote Sensing held the 2017 Environmental Spatial Information Research Paper Competition with the aim of both discovering new application fields of environmental spatial information and supporting outstanding researchers. The outstanding 9 papers were finally selected after reviewing 51 papers submitted for the competition. This special issue includes the 9 papers that address advanced methodologies and application results based on environmental spatial information, as well as recent environmental issues. We expect the methodologies and applications presented in this special issue would be a reference anthology for users of environmental spatial information.

Deep Learning-based Hyperspectral Image Classification with Application to Environmental Geographic Information Systems (딥러닝 기반의 초분광영상 분류를 사용한 환경공간정보시스템 활용)

  • Song, Ahram;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1061-1073
    • /
    • 2017
  • In this study, images were classified using convolutional neural network (CNN) - a deep learning technique - to investigate the feasibility of information production through a combination of artificial intelligence and spatial data. CNN determines kernel attributes based on a classification criterion and extracts information from feature maps to classify each pixel. In this study, a CNN network was constructed to classify materials with similar spectral characteristics and attribute information; this is difficult to achieve by conventional image processing techniques. A Compact Airborne Spectrographic Imager(CASI) and an Airborne Imaging Spectrometer for Application (AISA) were used on the following three study sites to test this method: Site 1, Site 2, and Site 3. Site 1 and Site 2 were agricultural lands covered in various crops,such as potato, onion, and rice. Site 3 included different buildings,such as single and joint residential facilities. Results indicated that the classification of crop species at Site 1 and Site 2 using this method yielded accuracies of 96% and 99%, respectively. At Site 3, the designation of buildings according to their purpose yielded an accuracy of 96%. Using a combination of existing land cover maps and spatial data, we propose a thematic environmental map that provides seasonal crop types and facilitates the creation of a land cover map.

Characteristics of the soil loss and soil salinity of upland soil in saemangeum reclaimed land in western South Korea

  • Kim, Young Joo;Lee, Su Hwan;Ryu, Jin Hee;Oh, Yang Yeol;Lee, Jeong Tae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.316-316
    • /
    • 2017
  • The objective of this study is to estimate quantitatively soil salinity and soil loss at upland soils in agriculture land region in Saemangeum reclaimed land on the south Korea coasts. Soil loss and soil salinity are the most critical problem at reclaimed tidal saline soil in Korea. The several thematic maps of research area such as land cover map, topographic and soil maps, together with tabular precipitation data used for soil erosion and soil salinity calculation. Meteorological data were measured directly as air temperature, wind speed, solar radiation, and precipitation. The experiment was conducted 2% sloped lysimeter ($5.0m{\times}20.0m$) with 14 treatments and it were separated by low salinity division (LSD) and high salinity division (HSD) install. The cation content in ground water increased during time course, but in the case of land surface water the content was variable, and $K^+$ was lower than that of $Na^+$ and $Mg^{2+}$. At the LSD under rainproof condition, the salinity was directly proportional to soil water content, but at the HSD the tendency was no reversed. In condition of rainproof, the amount of soil salinity was higher at the HSD than at the LSD. Positive correlation was obtained between the soil water content and available phosphorous content at the rainfall division, but there was no significance at the surface soil of the rainproof division. Sodium adsorption ratio and anion contents in soil were repressed in the order of vinyl-mulching > non-mulching > bare field. According to the result of analyzing soil loss, soil loss occurred in a vinyl-mulching, a non-mulching and a bare field in size order, and also approximately 11.2 ton/ha soil loss happened on the reclaimed land area. The average soil loss amount by the unit area takes place in a non-mulching and bare field a lot. Our results indicate that soluble salt control and soil erosion are critical at reclaimed tidal saline soil and the results can provide some useful information for deciding management plans to reduce soil loss and salt damage for stable crop production and diverse utilization or cultivation could be one of the management options to alleviate salt damage at reclaimed tidal saline soil in Korea.

  • PDF

Digital Gravity Anomaly Map of KIGAM (한국지질자원연구원 디지털 중력 이상도)

  • Lim, Mutaek;Shin, Younghong;Park, Yeong-Sue;Rim, Hyoungrea;Ko, In Se;Park, Changseok
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • We present gravity anomaly maps based on KIGAM's gravity data measured from 2000 to 2018. Until 2016, we acquired gravity data on about 6,400 points for the purpose of regional mapping covering the whole country with data density of at least one point per $4km{\times}4km$ for reducing the time of the data acquisition. In addition, we have performed local gravity surveys for the purpose of mining development in and around the NMC Moland Mine at Jecheon in 2013 and in the Taebaeksan mineralized zone from 2015 to 2018 with data interval of several hundred meters to 2 km. Meanwhile, we carried out precise gravity explorations with data interval of about 250 m on and around epicenter areas of Gyeongju and Pohang earthquakes of relatively large magnitude which occurred in 2016 and in 2017, respectively. Thus we acquired in total about 9,600 points data as the result. We also used additional data acquired by Pusan National University for some local areas. Finally, gravity data more than 16,000 points except for the repetition and temporal control points were available to calculate free-air, Bouguer, and isostatic gravity anomalies. Therefore, the presented anomaly maps are most advanced in spatial distribution and the number of used data so far in Korea.