Abstract
In this study, images were classified using convolutional neural network (CNN) - a deep learning technique - to investigate the feasibility of information production through a combination of artificial intelligence and spatial data. CNN determines kernel attributes based on a classification criterion and extracts information from feature maps to classify each pixel. In this study, a CNN network was constructed to classify materials with similar spectral characteristics and attribute information; this is difficult to achieve by conventional image processing techniques. A Compact Airborne Spectrographic Imager(CASI) and an Airborne Imaging Spectrometer for Application (AISA) were used on the following three study sites to test this method: Site 1, Site 2, and Site 3. Site 1 and Site 2 were agricultural lands covered in various crops,such as potato, onion, and rice. Site 3 included different buildings,such as single and joint residential facilities. Results indicated that the classification of crop species at Site 1 and Site 2 using this method yielded accuracies of 96% and 99%, respectively. At Site 3, the designation of buildings according to their purpose yielded an accuracy of 96%. Using a combination of existing land cover maps and spatial data, we propose a thematic environmental map that provides seasonal crop types and facilitates the creation of a land cover map.
본 연구는 4차 산업의 핵심기술인 인공지능과 환경공간정보의 융합을 통한 정보생산 및 활용가능성을 제시하고자 대표적인 딥러닝(deep-learning) 기법인 CNN(Convolutional Neural Network)을 이용한 영상분류를 수행하였다. CNN은 학습을 통해 스스로 분류기준에 따른 커널의 속성을 결정하며, 최적의 특징영상(feature map)을 추출하여 화소를 분류한다. 본 연구에서는 CNN network를 구성하여 기존의 영상처리 기법으로 해결이 어려웠던 분광특성이 유사한 물질간의 분류 및 GIS속성정보에 따른 분류를 수행하였으며, 항공초분광센서인 CASI(Compact Airborne Spectrographic imager)와 AISA(Airborne Imaging Spectrometer for Application)로 취득된 영상을 이용하였다. 실험대상지역은 총 3곳이며, Site 1과 Site 2는 감자, 양파, 벼 등의 다양한 농작물을 포함하며, Site 3는 단독주거시설, 공동주거시설 등 세분류 토지피복도의 분류 항목으로 구성된 건물을 포함한다. 실험결과, 분류 정확도 96%, 99%로 농작물을 종류에 따라분류하였으며, 96%의 정확도로 건물을 용도에 따라 분류하였다. 본 연구의 결과를 환경공간정보 서비스에 활용하기 위하여 계절별 농작물의 종류를 제공할 수 있는 환경주제도를 제안하였으며, 기존의 토지피복도와 최신 GIS자료를 이용한 세분류 토피지복도 제작 및 갱신 가능성을 확인하였다.