• Title/Summary/Keyword: The opposite side

Search Result 465, Processing Time 0.026 seconds

Structure of Opposite Wood in Angionsperms(I) - Structure of Opposite Woods in the Inclined Stem of Mature Woods - (활엽수(闊葉樹) Opposite재(材)의 구조(構造)(I) - 경사(傾斜) 생장(生長)한 성숙재(成熟材) 수간(樹幹)의 Opposite재(材) 구조(構造) -)

  • Park, Sang-Jin;Park, Byung-Soo;Soh, Won-Taek
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.1-12
    • /
    • 1989
  • To study the structure of opposite wood in the angiosperms. samples were cut from stems and branchs of 10 spcies growing in Korea. The opposite side was defined as being along a line passing from the most wide annual ring of the tension wood on the upper side to the pith and extrapolated through the opposite side. lateral sides being on the right and left of this line. The stem woods growing almost horizontally were surveyed the structural features of the well-developed opposite wood for the tension wood. In the annual-ring of the well-developed opposite woods. an investigation was made on how the dimension of elements, microfibril angles. and cell wall layers change from tension side to opposite side. The structural characteristics of opposite wood in hardwoods realized in this study are as follows: 1. The vessel diameters increased continuously to ward the opposite side in which the values were maximum. The vessel length also increased toward opposite side. but the rates of increase were smaller than those in the vessel diameters. 2. The wood fiber length were decreased from tension toward opposite side. but the rates of decrement were f1actuated within the sampled species. 3. The microfibril angles had the minimum values on the tension side. then increased steeply toward the opposite side in which the values maximum. 4. In the percentage of elements the vessel elements increased continously at a relative rate from the tension to opposite side, whereas the values of the wood fibers were lower in the opposite than the tension side, but the' variation patterns of rays were not seem distinctly. 5. The component layers of the wood fiber in the opposite woods were very similar to the lateral woods.

  • PDF

Which Direction Is the Opposite Side? The Ambiguity of Spatial Language and Communication Problems ('맞은편'은 어디인가? 공간언어의 모호성과 의사소통 문제)

  • Lee, Jong-Won
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.1
    • /
    • pp.71-86
    • /
    • 2008
  • The ambiguity of spatial language can be a source of communication problems. For instance, the 'the opposite side' in a sentence such as 'where is the opposite side of building X' can mean more than one direction. Research interests are focused on the directions of a spatial language 'the opposite side'. This study also explored the effect of geometric properties such as reference object's shape and distance from the reference object and spatial reference frame in the comprehension of 'the opposite side'. The assessment tasks used consisted of rating how appropriate the sentence 'where is the opposite side of building X' was to describe a series of pictures. The results of experiment suggest that 'the opposite side' means in most cases more than one direction simultaneously. Changing spatial reference frame has significant effects on individuals' rating of the tasks. However, while reference object's shape (prolonged building) has a consistent effect of the ratings given, the distance from the reference object (shortened road width) has limited influence in comprehending the tasks.

Scanning Electron Microscopic Studies on the Features of Compression Wood, Opposite Wood, and Side Wood in Branch of Pitch Pine(Pinus rigida Miller) (리기다소나무 (Pinus rigida Miller) 지재(枝材)의 압축이상재(壓縮異常材), 대응재(對應材) 및 측면재(側面材) 특성(特性)에 관한 주사전자현미경적(走査電子顯微鏡的)인 연구(硏究))

  • Eom, Young-Geun;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.3-18
    • /
    • 1985
  • In Korea, a study on the anatomical features of pitch pine (pinus rigida Miller) branch wood through photo-microscopical method was reported in 1972 by Lee. Therefore, as a further study of Lee's on the anatomical features in branch wood of pinus rigida miller that grows in Korea, compression wood, opposite wood, and side wood were selected and treated for the purpose of comparing their structures revealed on cross and radial surface through scanning electron microscope in this study. The obtained results in this study were summarized as follows; 1. The trachied transition from earlywood to late wood is very gradual and the tracheids are nearly regular in both arrangement and size in compression wood but this transition in opposite wood and side wood is abrupt and the tracheids in opposite wood and side wood are less regular than those in compression wood. Also, the annual ring width of opposite wood is narrower than that of compression wood or side wood and the rays revealed on cross surface of side wood are more distinct than compression wood and opposite wood rays. 2. The tracheids of compression wood show roundish trends especially in earlywood but those of opposite wood and side wood show some angular trends. And intercellular space, helical cavity, and spiral check are present in both earlywood and latewood of compression wood but not present in opposite wood and side wood irrespective of earlywood and latewood. 3. The wall thickness of latewood tracheid is similar to that of earlywood tracheid in compression wood whereas the wall thickness of latewood tracheid is by far thicker than that of earlywood tracheid in opposite wood and side wood and the S3 layer of secondary wall is lack in compression wood tracheid unlike opposite wood and side wood tracheid. 4. The tracheids in compression wood are often distorted at their tips unlike those in opposite wood and side wood and the bordered pit in compression wood tracheid is located at the bottom of helical groove unlike that in opposite wood and side wood tracheid. 5. The bordered pits in radial wall of opposite wood and side wood tracheids are oval in shape but those of compression wood tracheids show some modified oval shape. 6. In earlywood of side wood, the small apertures of cross-field pits are roundish triangle to rectangle and the large one are fenestriform through the coalition of two small ones. However, the small apertures of cross-field pits are upright oval and the large ones are procumbent oval shape in earlywood of opposite wood and the apertures of cross-field pits in compression wood are tilted bifacial convex lens shape in earlywood and slit in late wood because of the border on tracheid side.

  • PDF

A Study on the Usefulness of Breast Shielding Apron for Reducing Exposure Dose in Mammography (유방X선촬영 시 피폭선량 감소를 위한 유방촬영용 차폐복의 유용성에 관한 연구)

  • Koo, Bon-Yeoul;Kim, Ji-Won
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.99-104
    • /
    • 2019
  • Mammography, conducted every two years, causes cancer due to regular exposure to radiation while reducing rate of death caused by breast cancer. The study evaluates the effect of breast shielding apron made to shield off scattered radiation that occurs to the breast when the opposite side breast is mammogramed. AGD was measured using ACR phantom, composed of 50% mammary glands and 50% fat, and radiation was measured before and after wearing the apron on the breast when the opposite side of the breast is mammogramed. When CC direction mammography was conducted to a breast, the AGD was 1.84 mGy. When CC direction and MLO direction mammography were done to a breast, the average dose detected from the opposite side breast from four directions(top to bottom and medial to lateral) was $140{\mu}Gy$ with maximum dose of $256{\mu}Gy$ at medial side. After putting on the apron, the dose, caused by scattered radiation, was not detected from any of the four directions. Using of breast shielding apron is expected to minimize the radiation exposure by blocking scattered radiation to the breast shielded, when mammography is done to the opposite side breast.

A Basic Study on the Defect Detectability of Austenitic Stainless Steel Weldments using Ultrasonic Testing (초음파를 이용한 Austenitic Stainless Steel 용접부의 결함검출에 관한 기초적 연구)

  • Park, M.H.;Park, K.H.;Seo, D.M.;Yoon, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.8-21
    • /
    • 1989
  • This paper presents the ultrasonic characteristics of weldment and detectability of defects of weldment in Austenitic Stainless Steel Type 304 that is composed of mostly coolant piping system in nuclear power plants. The results of this experient show as follows: 1. When the ultrasonic beam detects the defects on the side of base metal and on the opposite side of weldment, the indications which was detected on the screen show different amplitude and different metal path each. 2. The ultrasonically estimated notch depth is generally oversized than actual notch depth. 3. It is easy for the false indication to show up on the screen because of columnar structure of weldment in austenitic stainless steel. 4. The higher frequencies of transducer have more difficulties to detect the defects of the opposite side of weldment because of ultrasonic attenuation in weldment and the longitudinal transmitter-receiver transducer is the most effective in detecting the opposite side defects of weldment.

  • PDF

Effects of Proprioceptive Neuromuscular Facilitation Leg Patterns on Activity of Gluteus Medius at Opposite Side (PNF 하지 패턴이 반대측 중둔근의 활성도에 미치는 영향)

  • Park, In-Suk;Lee, Sang-Yeol
    • PNF and Movement
    • /
    • v.14 no.3
    • /
    • pp.195-202
    • /
    • 2016
  • Purpose: This study investigates the influence of applying proprioceptive neuromuscular facilitation (PNF) leg patterns on the activation of three types of mesogluteal fibers at the opposite side. Methods: The target subjects of this study were 19 healthy men who voluntarily agreed to participate in the program. For all subjects, the following four PNF leg patterns were applied while they were in a standing position, and then, the activation of the gluteus medius at the opposite side was measured: (1) flexion abduction internal rotation pattern, (2) flexion adduction external rotation pattern, (3) extension abduction internal rotation pattern, and (4) extension adduction external rotation pattern. In each position, a pattern was executed three times in 5 s, and the average of each measurement was used for the statistics. Results: Among the PNF leg patterns, the activation of the mesogluteal fibers at the opposite side was most significant under the application of the extension abduction internal rotation pattern. The activation of the back muscular fiber was significantly high under the application of the flexion abduction internal rotation pattern. Conclusion: Selective application of PNF leg patterns can improve the functional activity of each mesogluteal fiber.

Structure of Opposite Wood in Angiosperms(II) - Structure of Opposite Woods in the Horizontal-growing Stems of Immature Woods - (활엽수(闊葉樹) Opposite재(材)의 구조(構造)(II) - 수평(水平) 생장(生長)시킨 유영목수간(幼 令木樹幹)의 Opposite재(材) 구조(構造) -)

  • Park, Sang-Jin;Park, Byung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.20-27
    • /
    • 1989
  • This experiment was made to find the peripheral variations of annualring widths, the cell dimensions, microfibril angles and bulk densities within each annual-ring of horizontal-growing young tree of beech(Betul a platyphylla var. japonica) and Oak (Quercus variabilis) from the tension to the opposite side. Also a comparision between the features of the obnormal annual ring for horizontal-growing year and normal annual ring for the straight-growing years was made. The dimension of propotion of the element, the microfibril angles and the bulk density decreased or increased continuously toward opposite side which showed minimum or maximum value. The dimension of elements the microfibril angles and the bulk density decreased or increased continuously towards opposite side which showed minimum or maximum value. The dimension of elements. the microfibril angles and the bulk density in the normal annual rings were similar to those in the lateral woods. whereas were significantly more different in the tension wood than in the opposite wood. The features of typical opposite wood in the hardwoods were influenced by the locations within the inclined stems than effects of the decrease in the annual ring width. The oppostie woods in hardwoods did not conform to the tension wood and lateral wood. The abnormal annual ring included the opposite wood, lateral wood similar to normal wood and tension wood having specialized structure even in the same annual ring.

  • PDF

Effect of Water-Cooling of Opposite SIde Caused by the Welding of Hull Internal on Weld Properties (이면 수냉이 용접부 물성에 미치는 영향)

  • 서창교;구연백;최승면
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.203-205
    • /
    • 2004
  • Welding sometimes should be done inside-hull after launching. The opposite side is contacted sea-water In this case, it should be a concern that the cooling rate expected very rapid may deteriorate microstructures, and hence these microstructures are hardened, cracking happens, or toughness would be impaired. Therefore, a test program simulating the situation has been planned and welded using the ship class materials (AH32, EH36) with the related welding consumables (E71Tl-1, E81Tl-K2) and then carried out to investigate the effect of cooling rate on weldments quality. Based on the test results, it could be concluded that the welds of which the opposite side of arc is exposed to wet or flowing water are not affected by rapid cooling.

  • PDF

Effect of Head Elevation and Position on Intracranial Pressure(ICP) in the Neurosurgical Patient with a Cerebral Aneurysm (뇌동맥류 수술환자에게 적용한 두부체위가 두개강내압에 미치는 영향)

  • 박혜자;최경옥;이병옥;정은주;유양숙
    • Journal of Korean Academy of Nursing
    • /
    • v.27 no.3
    • /
    • pp.503-509
    • /
    • 1997
  • This study was undertaken to identify optimal head elevation and position in the care of the neurosurgical patient with a cerebral aneurysm. The effects of 0°. 15° and 30° head elevation and three positions (supine, side tying position opposite to the operation site, and side tying position on the same side as the operation site) on ICP was studied in fourteen neurosurgical patients with cerebral aneurysms. The results are as follows : 1. The mean intracranial pressure was significantly lower when the patient's head was elevated at 30° as compared to 0° and 15°. 2. The mean intracranial pressure was significantly lower when the patient was positioned in the supine as compared to side tying position opposite to the operation site and side tying position on the same side as the operation site. The data indicate that head elevation to 30° and the supine position reduce ICP in neurosurgical patients with cerebral aneurysm.

  • PDF

A comparative study between the new model and the current model for T-shaped combined footings

  • Garay-Gallegos, Jesus Rafael;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Aguilera-Mancilla, Gabriel;Garcia-Canales, Edith
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.525-538
    • /
    • 2022
  • This paper presents a more general model for T-shaped combined footings that support two columns aligned on a longitudinal axis and each column provides an axial load and two orthogonal moments. This model can be applied to the following conditions: (1) without restrictions on its sides, (2) a restricted side and (3) two opposite sides restricted. This model considers the linear soil pressure. The recently published works have been developed for a restricted side and for two opposite sides restricted by Luévanos-Rojas et al. (2018a, b). The current model considers the uniform pressure distribution because the position of the resultant force coincides with the center of gravity of the surface of the footing in contact with the soil in direction of the longitudinal axis where the columns are located. This paper shows three numerical examples. Example 1 is for a T-shaped combined footing with a limited side (one column is located on the property boundary). Example 2 is for a T-shaped combined footing with two limited opposite sides (the two columns are located on the property boundary). Example 3 is for a T-shaped combined footing with two limited opposite sides, one column is located in the center of the width of the upper flange (b1/2=L1), and other column is located at a distance half the width of the strip from the free end of the footing (b2/2=b-L1-L). The main advantage of this work over other works is that this model can be applied to T-shaped combined footings without restrictions on its sides, a restricted side and two opposite sides restricted. It also shows the deficiencies of the current model over the new model.