• Title/Summary/Keyword: The number of fault

Search Result 616, Processing Time 0.024 seconds

Fault Isolation Filter Design Using Left Eigenstructure Assignment Scheme (좌 고유구조 지정기법을 이용한 고장분리 필터 설계)

  • 최재원;이대영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.695-702
    • /
    • 1998
  • In this paper, we propose a novel fault isolation filter design method using the left eigenstructure assignment scheme proposed by Choi et. al., The proposed filter shows good fault isolation performance with exact eigenstructure assignment. An eigenstructure assignment methodology which satisfies the required fault isolation conditions is also proposed. The proposed method guarantees that the corrupted m simultaneous faults can be isolated when the number of available output measurements are (m+1).

  • PDF

A study on the fault diagnosis of rotating machine by machine learning (기계학습을 적용한 회전체 고장진단에 관한 연구)

  • Jeon, Hang-Kyu;Kim, Ji-Sun;Kim, Bong-Ju;Kim, Won-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • In this study, a rotating machine that can reproduce normal condition and 8 fault conditions were produced, and vibration data was acquired. Feature is calculated from the acquired data, and accuracy is analyzed through fault diagnosis using artificial neural networks and genetic algorithms. In order to achieve optimal timing and higher accuracy, features by three domains were applied to the fault diagnosis. The learning number was selected as a setting variable. As a result of the rotating machine fault diagnosis, high precision was found in the frequency domain than in others, and precise fault diagnoses were accomplished through all of 10 operations, at the learning number of 5000 and 8000. Given the efficiency of time, it was estimated to be the most efficient when the number of learning was 5000.

Minimum Design of Fault-Tolerant Arrangement Graph for Distributed &Parallel System (분산/병렬 시스템을 위한 최소화의 오류-허용 방사형 그래프 설계)

  • Jun, Moon-Seog;Lee, Moon-Gu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3088-3098
    • /
    • 1998
  • The arrangement graph, which is a viable interconnection scheme for parallel and distributed systems, has been proposed as an attactive altemative to the n-cube. However, A fault tolerant design model which is well suitable for the arrangement graph doesn't has been proposd until recently, but fault tolerant design modelsfor many schemes have been proposed ina large number of paper. So, our paper presents a new fault tolerant design technique suited for the arrangement graph. To maintains the previous structures when it ocurs a fault in the current processing, the scheme properly sugbstitutes a fault-componnent into the existing structures by adding a spare component. the first of all, it converts arrangement graph into a circulant graph using the hamiltonian property and then uses automorphism of circulant graph to tolerate faults. Also, We optimize the cost of rate fault tolerant architectures by adding exactly k spare processor while tolerating up to k processor and minimizing the maximum number of limks per processor. Specially, we proposes a new techniue to minimize the maximum number of links.

  • PDF

Object Oriented Fault Detection for Fault Models of Current Testing (전류 테스팅 고장모델을 위한 객체기반의 고장 검출)

  • Bae, Sung-Hwan;Han, Jong-Kil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.443-449
    • /
    • 2010
  • Current testing is an effective method which offers higher fault detection and diagnosis capabilities than voltage testing. Since current testing requires much longer testing time than voltage testing, it is important to note that a fault is untestable if the two nodes have same values at all times. In this paper, we present an object oriented fault detection scheme for various fault models using current testing. Experimental results for ISCAS benchmark circuits show the effectiveness of the proposed method in reducing the number of faults and its usefulness in various fault models.

A Study of Fault Site at Byeonggok-myeon, Yeongdeok-gun, South Korea (영덕군 병곡면의 단층 노두 특성에 대한 연구)

  • Shin, Won Jeong;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.3
    • /
    • pp.63-83
    • /
    • 2021
  • In the southeastern part of the Korean Peninsula, the Yangsan Fault, an active fault zone, has developed. Many earthquakes occur around these faults, and the possibility of earthquakes occurring along the branch faults is being discussed. On the other hand, the Yeongdeok Fault is reported in Yeongdeok-gun, which is the northern part of the Yangsan fault. In this study, goemorphic characteristics of a set faults found on the outcrop of the gentle slope of the coast of Byeonggok-myeon were analyzed and granulometric and geochemical characteristics of sediments and other materials, including fault gouges were analyzed. The outcrop of Byeonggok-myeon is the part of the fault core and can be divided into two parts. Theses fault are formed on the upper part of the Mesozoic bedrock and the tertiary sedimentary layer of red sand-supported clasts are covered in several sedimentary units. The faults were normal fault sets, and a number of vertical cracks were developed, and glossy surfaces were observed in the fault area. It appears that these faults have occurred after alluvial deposition had been formed. In the case of samples from fault gouges, there were differences in particle size and geochemical characteristics from the surrounding area.

Evaluation of effectiveness of fault-tolerant techniques in a digital instrumentation and control system with a fault injection experiment

  • Kim, Man Cheol;Seo, Jeongil;Jung, Wondea;Choi, Jong Gyun;Kang, Hyun Gook;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.692-701
    • /
    • 2019
  • Recently, instrumentation and control (I&C) systems in nuclear power plants have undergone digitalization. Owing to the unique characteristics of digital I&C systems, the reliability analysis of digital systems has become an important element of probabilistic safety assessment (PSA). In a reliability analysis of digital systems, fault-tolerant techniques and their effectiveness must be considered. A fault injection experiment was performed on a safety-critical digital I&C system developed for nuclear power plants to evaluate the effectiveness of fault-tolerant techniques implemented in the target system. A software-implemented fault injection in which faults were injected into the memory area was used based on the assumption that all faults in the target system will be reflected in the faults in the memory. To reduce the number of required fault injection experiments, the memory assigned to the target software was analyzed. In addition, to observe the effect of the fault detection coverage of fault-tolerant techniques, a PSA model was developed. The analysis of the experimental result also can be used to identify weak points of fault-tolerant techniques for capability improvement of fault-tolerant techniques

Analysis for Fault and Malfunction of the Elevator for the Passenger (승객용 승강기 고장 및 오동작 사례 분석)

  • Kim, Gi-Hyun;Bang, Sen-Bae;Kim, Chong-Min;Hwang, Kwang-Su
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.327-331
    • /
    • 2005
  • This paper gives the information for fault and malfunction of the Elevator for the passenger. For analyzing the fault and malfunction of the elevator equipment we research the report of fault and malfunction which is written by ATP electric director and Elevator maintenance company during recently one year. We analyze the number of fault and malfunction according to classified by month, season, time and classify the kind of fault and malfunction such as stop, fault of door, malfunction of floor indication and so on. And now we research fault and malfunction for the power quality such as Sag, Swell, Interruption, Harmonic, electric voltage rise and so on at elevator equipments and are testing Elevator imitation equipment.

  • PDF

Study on parallel algorithmfor falult simulation (고장시뮬레이션의 병렬화 알고리듬에 관한 연구)

  • 송오영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2966-2977
    • /
    • 1996
  • As design of very large circuits is made possible by rapid development of VLSI technologies, efficient fault simulation is needed. Ingeneral, fault simulation requires many computer resources. As general-purpose multiprocessors become more common and affordable, these seem to be an attractive and effective alternative for fault simulation. Efficient fault simulation of synchronous sequential circuits has been reported to be attainably by using a linear iterative array model for such a circuit, and combining parallel fault simulation with russogate fault simulation. Such fault simulation algorithm is parallelized on a general-purpose multiprocessor with shard memory for acceleration of fault simulation. Through the experimenal study, the effect of the number of processors on speed-up of simulation, processor utilization, and the effect of multiprocessor hardware on simulation performance are studied. Some results for experiments with benchmark circuits are shown.

  • PDF

Design of High Efficient Fault Diagnostic System by Using Fuzzy Concept (퍼지개념을 이용한 고성능 고장진단 시스템의 설계)

  • 이쌍윤;김성호;권오신;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.247-251
    • /
    • 1997
  • FCM(Fuzzy Cognitive Map) is a fuzzy signed directed graph for representing causal reasoning which has fuzziness between causal concepts. Authors have already proposed FCM-based fault diagnostic scheme and verified its usefulness. However, the previously proposed scheme has the problem of lower diagnostic resolution as in the case of other qualitative approaches. In order to improve the diagnostic resolution, a concept of fuzzy number is introduced into the basic FCM-based fault diagnostic algorithm. By incorporation the fuzzy number into fault FCM models, quantitative information such as the transfer gain between the state variables can be effectively utilized for better diagnostic resolution. Furthermore, an enhanced TAM(Temporal Associative Memory) recall procedure and modified and modified pattern matching scheme are also proposed.

  • PDF

A Fault-tolerant Mutual Exclusion Algorithm in Asynchronous Distributed Systems

  • Kim, Yoon
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • Mutual Exclusion is one of the most studied topics in distributed systems where processes communicate by asynchronous message passing. It is often necessary for multiple processes at different sites to access a shared resource or data called a critical section (CS) in distributed systems. A number of algorithms have been proposed to solve the mutual exclusion problem in distributed systems. In this paper, we propose the new algorithm which is modified from Garg's algorithm[1] thus works properly in a fault-tolerant system. In our algorithm, after electing the token generator, the elected process generates a new token based on the information of the myreqlist which is kept by every process and the reqdone which is received during election. Consequently, proposed algorithm tolerates any number of process failures and also does even when only one process is alive.