DOI QR코드

DOI QR Code

A study on the fault diagnosis of rotating machine by machine learning

기계학습을 적용한 회전체 고장진단에 관한 연구

  • Received : 2020.05.28
  • Accepted : 2020.07.16
  • Published : 2020.07.31

Abstract

In this study, a rotating machine that can reproduce normal condition and 8 fault conditions were produced, and vibration data was acquired. Feature is calculated from the acquired data, and accuracy is analyzed through fault diagnosis using artificial neural networks and genetic algorithms. In order to achieve optimal timing and higher accuracy, features by three domains were applied to the fault diagnosis. The learning number was selected as a setting variable. As a result of the rotating machine fault diagnosis, high precision was found in the frequency domain than in others, and precise fault diagnoses were accomplished through all of 10 operations, at the learning number of 5000 and 8000. Given the efficiency of time, it was estimated to be the most efficient when the number of learning was 5000.

본 논문에서는 정상상태와 8가지의 고장이 재현가능한 회전체를 제작하고 진동 데이터를 취득하였다. 취득한 데이터로 특징을 계산하여 인공신경망과 유전알고리즘을 적용한 고장진단을 통해 정확성을 분석한다. 최적의 시간과 높은 정확성의 구현을 위해 특징을 3가지 영역으로 구분하여 고장진단에 적용하였다. 설정변수는 학습수로 설정하였다. 회전체 고장진단의 결과는 다른 영역보다 주파수영역에서 높은 정확성을 보였으며 학습수 5000, 8000회에서 10회의 구동 모두 정확한 고장진단을 하였다. 시간의 효율성을 고려하였을 경우, 학습수가 5000회일 때 가장 우수하다고 판단하였다.

Keywords

References

  1. S. M. Lee and J. S. Joh, "Development of a fault diagnosis system for assembled small motors using ANN" (in Korean), JKSPE. 18, 124-131 (2001).
  2. R. Liu, B. Yang, E. Zio, and X. Chen, "Artificial intelligence for fault diagnosis of rotating machinery: A review," Mechanical Systems and Signal Processing, 108, 33-47 (2018). https://doi.org/10.1016/j.ymssp.2018.02.016
  3. P. K. Kankar, S. C. Sharma, and S. P. Harsha, "Fault diagnosis of ball bearings using machine learning methods," Expert Systems with Applications, 38, 1876-1886 (2011). https://doi.org/10.1016/j.eswa.2010.07.119
  4. B. A. Paya, I. I. Esat, and M. N. M.Badi, "Artificial neural network based fault diagnostics of rotating machinery using wavelet transforms as a preprocessor," Mechanical Systems and Signal Processing, 11, 751-765 (1997). https://doi.org/10.1006/mssp.1997.0090
  5. N. Saravanan, V. N. Siddabattuni, and K. I. Ramachandran, "Fault diagnosis of spur bevel gear box using artificial neural network (ANN), and proximal support vector machine (PSVM)," Applied Soft Computing, 10, 334-360 (2010).
  6. J. M. Ha, B. H. Ahn, H. T. Yu, and B. K. Choi, "Feature analysis based on genetic algorithm for diagonosis of misalignment" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 27, 189-194 (2017). https://doi.org/10.5050/KSNVE.2017.27.2.189
  7. H. J. Kim, B. H. Ahn, D. H. Park, and B. K. Choi, "Feature analysis for fault diagnosis according to gearbox failure" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 27, 312-317 (2017). https://doi.org/10.5050/KSNVE.2017.27.3.312
  8. B. H. Ahn, H. T. Yu, and B. K. Choi, "Feature-based analysis for fault diagnosis of gas turbine using machine learning and genetic algorithms" (in Korean), JKSPE. 35, 163-167 (2018).
  9. B. Samanta, K. R. Al-Balushi, and S. A. Al-Araimi, "Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection," Engineering Applications of Artificial Intelligence, 16, 657-665 (2003). https://doi.org/10.1016/j.engappai.2003.09.006
  10. M. Unal, M. Onat, M. Demetgul, and H. Kucuk, "Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network," Measurement, 58, 187-196 (2014). https://doi.org/10.1016/j.measurement.2014.08.041