• Title/Summary/Keyword: The mobile robot

Search Result 2,533, Processing Time 0.031 seconds

A Study On Steering System for Mobile Robot with Permanent Magnet Wheels (영구자석 바퀴를 이용한 이동 로봇의 조향 시스템 연구)

  • Kim Jin-Gak;Yi Hwa-Cho;Han Seung-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.311-312
    • /
    • 2006
  • In this paper, steering systems for mobile robot with permanent magnet wheels are discussed. The mobile robot with permanent magnet wheels can have three different types of steering and driving configurations; two-wheels, three-wheels, four-wheels. By a Two-WD(Wheel Driving) system, driving and steering characteristics are controlled by ratio of each wheel speeds. Three-WD system is steered by a front wheel and driven by rear wheels. Four-WD system has better stability than two wheel system. Usually the permanent magnet wheel has nearly none slip. Thus turning radius of the mobile robot with three-WD and four-WD System will be increased and the steering and driving system will be complicated. To solve this problem, two magnet wheels with two dummy wheels are used in this study. fuming radius of the developed mobile robot is small and the structure of the robot is simple. It is possible to move forward, backward, to turn left and right, and to rotate freely with two-WD. This study proved that two-WD system is very suitable fur the mobile robot with permanent magnet wheels.

  • PDF

Variable Impedance Control and Fuzzy Inference Based Identification of User Intension for Direct Teaching of a Mobile Robot (이동로봇의 직접교시를 위한 가변 임피던스제어와 퍼지추론 기반 사용자 의도 파악)

  • Ko, Jong Hyeon;Bae, Jang Ho;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.647-654
    • /
    • 2016
  • Controlling a mobile robot using conventional control devices requires skill and experience, and is not intuitive, especially in complex environments. For human-mobile robot cooperation, the direct-teaching method with impedance control has been used most frequently in complex environments. This thesis proposes a new direct-teaching method for a mobile robot utilizing variable impedance control. This includes analysis of user intention, which is changed by force and moment. A fuzzy inference technique is proposed in this thesis for identification of user intension. The direct teaching of a mobile robot based on variable impedance control through fuzzy inference is experimentally verified by comparing its efficiency to that of the conventional impedance control-based direct teaching of a mobile robot. Experimental data, such as the total time consumed, path error time, and the total energy used by the user, were recorded. The results showed that the efficiency of variable impedance control was increased.

Navigation Using Fuzzy Control in Mobile Robot (이동로봇에서 퍼지제어를 이용한 방법)

  • 권대갑;이봉구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.784-789
    • /
    • 1994
  • In the mobile robot research, monitoring the present status and self-navigating the robot in various environment are signifiant. This paper treates a navigation algorithm using a fuzzy logic and a sensor system - laser range finder. The navigation algorithm using a fuzzy logic is achieved by organizing the knoweledge base for self-navigation of mobile robot. In order that mobile robot is economically arrived the goal, the knowledge base is applied to acquire the informations of moving distance, direction, and velocity in every cycle time.

  • PDF

Development of an Algorithm for Predictable Navigation and Collision Avoidance Using Pattern Recognition of an Obstacle in Autonomous Mobile Robot (장애물 패턴을 이용한 자율이동로봇의 예측주행 및 충돌회피 알고리즘 개발)

  • Lee, Min-Chul;Kim, Bum-Jae;Lee, Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.113-123
    • /
    • 2000
  • In the navigation for a mobile robot, the collision avoidance with unexpected obstacles is essential for the safe navigation and it is independent of the technique used to control the mobile robot. This paper presents a new collision avoidance algorithm using neural network for the safe navigation of the autonomous mobile robot equipped with CAN and ultrasonic sensors. A tracked wheeled mobile robot has a stability and an efficiency to move on a rough ground. And its mechanism is simple. However it has difficulties to recognize its surroundings. Because the shape of the tracked wheeled mobile robot is a square type, sensor modules are generally located on the each plane surface of 4 sides only. In this paper, the algorithm using neural network is proposed in order to avoid unexpected obstacles. The important character of the proposed algorithm is to be able to detect the distance and the angle of inclination of obstacles. Only using datum of the distance and the angle, informations about the location and shape of obstacles are obtained, and then the driving direction is changed. Consequently, this algorithm is capable of real time processing and available for a mobile robot which has few sensor modules or the limited sensing range such as a tracked wheeled mobile robot. Effectiveness of the proposed algorithm is illustrated through a computer simulation and an experiment using a real robot.

  • PDF

Integrated Task Planning based on Mobility of Mobile Manipulator (M2) Platform

  • Jin, Tae-Seok;Kim, Hyun-Sik;Kim, Jong-Wook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.206-212
    • /
    • 2009
  • This paper presents an optimized integrated task planning and control approach for manipulating a nonholonomic robot by mobile manipulators. Then, we derive a kinematics model and a mobility of the mobile manipulator(M2) platform considering it as the combined system of the manipulator and the mobile robot. to improve task execution efficiency utilizing the redundancy, optimal trajectory of the mobile manipulator(M2) platform are maintained while it is moving to a new task point. A cost function for optimality can be defined as a combination of the square errors of the desired and actual configurations of the mobile robot and of the task robot. In the combination of the two square errors, a newly defined mobility of a mobile robot is utilized as a weighting index. With the aid of the gradient method, the cost function is minimized, so the path trajectory that the M2 platform generates is optimized. The simulation results of the 2 ink planar nonholonomic M2 platform are given to show the effectiveness of the proposed algorithm.

Internet Based Remote Control of a Mobile Robot (인터넷 기반 이동로봇의 원격제어)

  • Choi, Mi-Young;Park, Jang-Hyun;Kim, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.502-504
    • /
    • 2004
  • With rapidly growing of computer and internet technology, Internet-based tote-operation of robotic systems has created new opportunities in resource sharing, long-distance learning, and remote experimentation. In this paper, remote control system of a mobile robot through the internet has been designed. The internet users can access and command a mobile robot in the real time, receiving the robot's sensor data. The overall system has been tested and its usefulness shown through the experimental results.

  • PDF

Design of a Web-based Autonomous Under-water Mobile Robot Controller Using Neuro-Fuzzy in the Dynamic Environment (동적 환경에서 뉴로-퍼지를 이용한 웹 기반 자율 잠수 이동로봇 제어기 설계)

  • 최규종;신상운;안두성
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.77-83
    • /
    • 2003
  • Autonomous mobile robots based on the Web have been already used in public places such as museums. There are many kinds of problems to be solved because of the limitation of Web and the dynamically changing environment. We present a methodology for intelligent mobile robot that demonstrates a certain degree of autonomy in navigation applications. In this paper, we focus on a mobile robot navigator equipped with neuro-fuzzy controller which perceives the environment, make decisions, and take actions. The neuro-fuzzy controller equipped with collision avoidance behavior and target trace behavior enables the mobile robot to navigate in dynamic environment from the start location to goal location. Most telerobotics system workable on the Web have used standard Internet techniques such as HTTP, CGI and Scripting languages. However, for mobile robot navigations, these tools have significant limitations. In our study, C# and ASP.NET are used for both the client and the server side programs because of their interactivity and quick responsibility. Two kinds of simulations are performed to verify our proposed method. Our approach is verified through computer simulations of collision avoidance and target trace.

Rmap+: Autonomous Path Planning for Exploration of Mobile Robot Based on Inner Pair of Outer Frontiers

  • Buriboev, Abror;Kang, Hyun Kyu;Lee, Jun Dong;Oh, Ryumduck;Jeon, Heung Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3373-3389
    • /
    • 2022
  • Exploration of mobile robot without prior data about environments is a fundamental problem during the SLAM processes. In this work, we propose improved version of previous Rmap algorithm by modifying its Exploration submodule. Despite the previous Rmap's performance which significantly reduces the overhead of the grid map, its exploration module costs a lot because of its rectangle following algorithm. To prevent that, we propose a new Rmap+ algorithm for autonomous path planning of mobile robot to explore an unknown environment. The algorithm bases on paired frontiers. To navigate and extend an exploration area of mobile robot, the Rmap+ utilizes the inner and outer frontiers. In each exploration round, the mobile robot using the sensor range determines the frontiers. Then robot periodically changes the range of sensor and generates inner pairs of frontiers. After calculating the length of each frontiers' and its corresponding pairs, the Rmap+ selects the goal point to navigate the robot. The experimental results represent efficiency and applicability on exploration time and distance, i.e., to complete the whole exploration, the path distance decreased from 15% to 69%, as well as the robot decreased the time consumption from 12% to 86% than previous algorithms.

Navigation of a Mobile Robot Using Hand Gesture Recognition (손 동작 인식을 이용한 이동로봇의 주행)

  • Kim, Il-Myeong;Kim, Wan-Cheol;Yun, Gyeong-Sik;Lee, Jang-Myeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.599-606
    • /
    • 2002
  • A new method to govern the navigation of a mobile robot using hand gesture recognition is proposed based on the following two procedures. One is to achieve vision information by using a 2-DOF camera as a communicating medium between a man and a mobile robot and the other is to analyze and to control the mobile robot according to the recognized hand gesture commands. In the previous researches, mobile robots are passively to move through landmarks, beacons, etc. In this paper, to incorporate various changes of situation, a new control system that manages the dynamical navigation of mobile robot is proposed. Moreover, without any generally used expensive equipments or complex algorithms for hand gesture recognition, a reliable hand gesture recognition system is efficiently implemented to convey the human commands to the mobile robot with a few constraints.

Development of an autonomous mobile robot for an Exhibition guide (전시장 안내용 로보트 개발)

  • 정연기;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1-6
    • /
    • 1992
  • An autonomous mobile robot has been developed which can follow a travel map drawn on a monitor screen using a software. The robot works as an exhbition guide making announcement regrading the events to take place or introducing the products on display. This mobile robot computes the world position and heading direction through camera image, ultrasonic and infrared sensors in real time using specially designed algorithm. This mobile robot will be exhibited at '93 Tae-Jeon EXPO for an exhibition guide, and will be used in a plant or a hospital for materials handling purposes.

  • PDF