• Title/Summary/Keyword: The fire safety

Search Result 3,693, Processing Time 0.032 seconds

Combustion of ethyl alcohol and kerosene fuel droplets in atmospheric pressure (대기압하에서의 에틸알코올과 케로신 연료액적의 연소에 관한 연구)

  • Han, jae-seob;Kim, seon-jin;Park, bong-yeop;Kim, yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.71-78
    • /
    • 2001
  • This paper presents the results of an experimental investigation on the combustion of single droplets arrays of Ethyl alcohol and kerosene fuel droplets in atmospheric pressure. The initial droplet diameters, d$_{0}$, were nominally 1.3~1.8mm, and inter-droplet separation distance l(l/do=1.31~2.60). experimental results indicate that burning rate constants(K) of ethyl alcohol and kerosene droplets were independent of initial droplet size as 0.0083, 0.0095 $\textrm{cm}^2$/sec. For 1-D droplet array's kerosene fuel droplet, burning rate constants(K) decreases with decreasing normalized inter-droplet distance. Normalized inter-droplet distance has stronger effect on 2nd fuel droplet than 3rd fuel droplet. When normalized inter-droplet distance is larger than 2.60, the effect of droplet spacing on droplet life is very small.

  • PDF

Thermal Packaging for Firefighters' Personal Protective Elctronic Equipments (소방대원 개인보호용 전자장비 패키징 기술개발)

  • Park, Woo-Tae;Jeon, Jiwon;Choi, Han Tak;Woo, Hee Kwon;Woo, Deokha;Lee, Sangyoup
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.319-325
    • /
    • 2015
  • While the conventional personal protective equipments (PPEs) covers a variety of devices and garments such as respirators, turnout gear, gloves, blankets and gas masks, several electronic devices such as personal alert safety system (PASS) and heads-up displays in the facepiece have become a part of firefighters personal protective equipments through past several years. Furthermore, more advanced electronic sensors including location traking sensor, thermal imaging caerma, toxic gas detectors, and even physiological monitoring sensors are being integrated into ensemble elements for better protection of firefighters from fire sites. Despite any electronic equipment placed on the firefighter must withstand environmental extremes and continue to properly function under any thermal conditions that firefighters routinely face, there are no specific criteria for these electronics to define functionability of these devices under given thermal conditions. Although manufacturers provide the specifications and performance guidelines for their products, their operation guidelines hardly match the real thermal conditions. Present study overviews firefighter's fatalities and thermal conditions that firefighters and their equipments face. Lastly, thermal packaging methods that we have developed and tested are introduced.

AE Characteristic under Tensile of Carbon Steel for High-Pressure Pipe (고압배관용 탄소강의 인장시 음향방출 특성)

  • Nam Kiwoo;Lee Siyoon
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.48-53
    • /
    • 2003
  • This study is to look at the effect for deformation of carbon steel for high-presure pipe, on the AE signals produced by tensile test. Acoustic emission(AE) has been widely used in various fields because of its extreme sensitivity, dynamic detection ability and location of growing defects. We investigated a relationship failure mode and AE signals by tensile test, From the tensile test, we could divide into four ranges of the failure modes of elastic range, yield range, plastic range before $\sigma$u, plastic range after $\sigma$u. And failure behaviors of elastic range, yield range, plastic range before $\sigma$u, plastic range after $\sigma$u could be evaluated in tensile test by AE counts, accumulation counts and time frequency analysis. It is expected to be basic data that can protect a risk according to tensile test and bending of pipe material for pressure vessel, as a real time test of AE.

  • PDF

Detection of Toluene Hazardous and Noxious Substances (HNS) Based on Hyperspectral Remote Sensing (초분광 원격탐사 기반 위험·유해물질 톨루엔 탐지)

  • Park, Jae-Jin;Park, Kyung-Ae;Foucher, Pierre-Yves;Kim, Tae-Sung;Lee, Moonjin
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.623-631
    • /
    • 2021
  • The increased transport of marine hazardous and noxious substances (HNS) has resulted in frequent HNS spill accidents domestically and internationally. There are about 6,000 species of HNS internationally, and most of them have toxic properties. When an accidental HNS spill occurs, it can destroys the marine ecosystem and can damage life and property due to explosion and fire. Constructing a spectral library of HNS according to wavelength and developing a detection algorithm would help prepare for accidents. In this study, a ground HNS spill experiment was conducted in France. The toluene spectrum was determined through hyperspectral sensor measurements. HNS present in the hyperspectral images were detected by applying the spectral mixture algorithm. Preprocessing principal component analysis (PCA) removed noise and performed dimensional compression. The endmember spectra of toluene and seawater were extracted through the N-FINDR technique. By calculating the abundance fraction of toluene and seawater based on the spectrum, the detection accuracy of HNS in all pixels was presented as a probability. The probability was compared with radiance images at a wavelength of 418.15 nm to select abundance fractions with maximum detection accuracy. The accuracy exceeded 99% at a ratio of approximately 42%. Response to marine spills of HNS are presently impeded by the restricted access to the site because of high risk of exposure to toxic compounds. The present experimental and detection results could help estimate the area of contamination with HNS based on hyperspectral remote sensing.

Development of Tunnel-Environment Monitoring System and Its Installation III -Measurement in Solan Tunnel- (터널 환경 측정 시스템 개발 및 측정 III -솔안터널 측정결과 분석-)

  • Park, Won-Hee;Cho, Youngmin;Kwon, Tae-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.637-644
    • /
    • 2016
  • This paper is a follow-up to previous papers entitled, "Development of Tunnel-Environment Monitoring System and Its Installation" I [1] and II [2]. The target tunnel of these studies is the Solan Tunnel, which is a loop-type, single-track, 16.7-km-long tunnel located in mountainous terrain and passing through the Baekdudaegan mountain range. It is an ordinary railway tunnel designed for both freight and passenger trains. We analyzed the environmental conditions of the tunnel using temperature and humidity data recorded over approximately one year. The data were recorded using the Tunnel Rough Environment Measuring System (TREMS), which measures environmental data in subway and high-speed train tunnels and is installed in three locations inside the tunnel. Previous studies analyzed environmental conditions inside tunnels located in or near a city, whereas the tunnel in this study is located in a mountainous area. The tunnel conditions were compared with those measured outside the tunnel for each month. Hourly changes during summer and winter periods were also analyzed, and the environmental conditions at different locations inside the tunnel were compared. The results are widely applicable in studies on the thermal environment and air quality of tunnels, as well as for computer analysis of tunnel airflow such as tunnel ventilation and fire simulations.

Cellular Automata Simulation System for Emergency Response to the Dispersion of Accidental Chemical Releases (사고로 인한 유해화학물질 누출확산의 대응을 위한 Cellular Automata기반의 시뮬레이션 시스템)

  • Shin, Insup Paul;Kim, Chang Won;Kwak, Dongho;Yoon, En Sup;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.136-143
    • /
    • 2018
  • Cellular automata have been applied to simulations in many fields such as astrophysics, social phenomena, fire spread, and evacuation. Using cellular automata, this study develops a model for consequence analysis of the dispersion of hazardous chemicals, which is required for risk assessments of and emergency responses for frequent chemical accidents. Unlike in cases of detailed plant safety design, real-time accident responses require fast and iterative calculations to reduce the uncertainty of the distribution of damage within the affected area. EPA ALOHA and KORA of National Institute of Chemical Safety have been popular choices for these analyses. However, this study proposes an initiative to supplement the model and code continuously and is different in its development of free software, specialized for small and medium enterprises. Compared to the full-scale computational fluid dynamics (CFD), which requires large amounts of computation time, the relative accuracy loss is compromised, and the convenience of the general user is improved. Using Python open-source libraries as well as meteorological information linkage, it is made possible to expand and update the functions continuously. Users can easily obtain the results by simply inputting the layout of the plant and the materials used. Accuracy is verified against full-scale CFD simulations, and it will be distributed as open source software, supporting GPU-accelerated computing for fast computation.

An Examination on the Dispersion Characteristics of Boil-off Gas in Vent Mast Exit of Membrane Type LNG Carriers (멤브레인형 LNG선박 화물탱크 벤트 마스트 출구에서의 BOG 확산 특성에 관한 연구)

  • Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.225-231
    • /
    • 2013
  • Liquefied gas carriers generally transport cargoes of flammable or toxic nature. Since these cargoes may cause an explosion, fire or human casualty, the accommodation spaces, service spaces and control stations of liquefied gas carriers should be so located as to avoid ingress of gas. For this reason, the paragraph 8.2.9 of IGC Code in IMO requires that the height of vent exits should be not less than B/3 or 6 m whichever is greater, above the weather deck and 6 m above the working area and the fore and aft gangway to prevent any concentration of cargo vapor or gas at such spaces. Besides as known, the LNG market has been growing continually, which has led to LNG carriers becoming larger in size. Under this trend, the height of a vent will have to be raised considerably since the height of a vent pipe is generally decided by a breadth of a corresponding vessel. Accordingly, we have initiated an examination to find an alternative method which can be used to determine the safe height of vent masts, instead of the current rule requirement. This paper describes the dispersion characteristics of boil-off gas spouted from a vent mast under cargo tank cool-down conditions in the membrane type LNG carriers.

Characterization and Anti-Gastric Ulcer Activity of Bamboo Salt (죽염의 특성 분석과 항위궤양효과)

  • 김승희;강석연;정기경;김태균;한형미;류항묵;문애리
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.3
    • /
    • pp.252-257
    • /
    • 1998
  • Bamboo salt has been used as a traditional remedy for gastric ulcer and gastro-intestinal disorders. It is produced by baking the salt packed in bamboo cylinder nine times under the fire of pine tree. Three of commercially available bamboo salt products (bamboo salt A, B, and C) were characterized by qualitative and quantitative analyses using inductively coupled plasma (ICP) spectrometer, ion chromatograph (IC), X-ray diffractometer (XRD), and electron microscope (EM). Compared with crude salt, the contents of iron, silicon, potassium, and phosphate in the bamboo salt products were higher whereas the sulfate content was lower. Water-insoluble fraction of bamboo salts contained the following compounds; MgO, $SiO_2,\;Mg_2Si0_4,\;and\;CaMgSi0_4$. The study on the microscopic structures of the bamboo salts were shown to have smooth surface and fused shape compared with crude salt. Among the three bamboo salt products, product A was used to test a possible inhibitory effect on gastric acid secretion. Each test material (bamboo salt A, crude salt, and reagent-grade NaCl) was given orally to Sprague-Dawley rats at doses of 0.2, 1.0, and 2.0 g/kg for 28 days before pyrolus ligation. Twenty four hours after the last administration of the test materials, volume, pH, total acidity, and pepsin activity of gastric juice were measured by the Shay-ligation method. No significant differences were observed in the secretion of gastric acid between treated groups (bamboo salt-, crude salt- and reagent-grade NaCI-treated groups) and control group (distilled water-treated group). This result demonstrated that bamboo salt did not exert anti-ulcer activities in experimental animals used in the present study.

  • PDF

An Analysis on the Deployment Methods for Smart Monitoring Systems (스마트 모니터링 시스템의 배치 방식 분석)

  • Heo, No-Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.55-62
    • /
    • 2010
  • Monitoring systems are able to report certain events at region of interest(ROI) and to take an appropriate action. From industrial product line full of robots to fire detection, intrusion detection, smart grid application, environmental pollution alarm system, monitoring system has widely used in diverse industry sector. Recently, due to advance of wireless communication technology and availability of low cost sensors, intelligent and/or smart monitoring systems such as sensor networks has been developed. Several deployment methods are introduced to meet various monitoring needs and deployment performance criteria are also summarized to be used to identify weak point and be useful at designing monitoring systems. Both efficiency during deployment and usefulness after the deployment should be assessed. Efficiency factors during deployment are elapsed time, energy required, deployment cost, safety, sensor node failure rate, scalability. Usefulness factors after deployment are ROI coverage, connectivity, uniformity, target density similarity, energy consumption rate per unit time and so on.

A Stress Analysis for Pressure Vessel to Prevent Spontaneous Ignition of Coal Stockpile (저탄장 자연발화 방지를 위한 압력용기의 응력 해석)

  • Kim, Young In;Kim, Seung Hun;Jie, Min-Seok;Yeum, Chan Sub;Choi, Won Hyuck
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.205-212
    • /
    • 2018
  • Spontaneous ignition is not only severe economic damage but also a typical plant damage caused by harmful gases generated during the fire. Because coal is porous, it causes oxygen to be absorbed in the amount of oxygen per unit weight of oxygen, resulting in low humidity and low thermal conductivity. The cause and effect of spontaneous ignition are very complex, so it is difficult to prevent it beforehand and once it is difficult to digest it, it is difficult to digest it. This study examines structural safety by conducting a structural analysis of the cooling ball system to prevent spontaneous combustion of coal stockpile plants and external pressures.