• Title/Summary/Keyword: The Plants Factory

Search Result 135, Processing Time 0.033 seconds

ICT-Based Smart Farm Factory Systems through the Case of Hydroponic Ginseng Plant Factory (수경인삼 식물공장 사례를 통한 ICT 기반 스마트 팜 팩토리 시스템)

  • Hwang, Sung-Il;Joo, Jong-Moon;Joo, Seong-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.780-790
    • /
    • 2015
  • Studies for a plants factory is progressing for cultivating various plants by the needs of the times and industry around world. However most studies is carried out only in lab sized plants factory. It does not consider an economic feasibility. The study for a large scale plants factory is very required to get an economic gain. In this paper we has been studying a smart farm factory based on ICT using the hydroponics ginseng. The smart farm factory is to extend a concept of the general plants factory to full automated factory. The factory can collect the information about growing of plants and automate operating and management of factory like the existing plants factory. Also it is the total plants factory management system, which analyzes the collected information for optimized growth and development of plants and applies the result to the system back.

Growth of Runner Plants Grown in a Plant Factory as Affected by Light Intensity and Container Volume

  • Park, Seon Woo;Kwack, Yurina;Chun, Changhoo
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.439-445
    • /
    • 2017
  • Transplant production in a plant factory with artificial lighting provides several benefits; (1) rapid and uniform transplant production, (2) high production rate per unit area, and (3) production of disease free transplants production. To improve the growth of runner plants when strawberry transplants are produced in a plant factory, we conducted two experiments to investigate (1) the effect of different light intensity for stock and runner plants on the growth of runner plants, and (2) the effect of different container volume for runner plants on their growth. When the stock and runner plants were grown under nine different light conditions composed of three different light intensities (100, 200, and $400{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPF) for each stock and runner plants, increasing the light intensity for stock plants promoted the growth of runner plants, however, the growth of runner plants was not enhanced by increasing the light intensity for runner plants under same light intensity condition for stock plants. We also cultivated runner plants using plug trays with four different container volumes (21, 34, 73, and 150 mL) for 20 days after placing the stock plants, and found that using plug trays with lager container volume did not enhance the growth of runner plants. These results indicate that providing optimal condition for stock plants, rather than the runner plants, is more important for increasing the growth of the runner plants and that the efficiency of strawberry transplant production in a plant factory can be improved by decreasing light intensity or container volume for runner plants.

Optimal Planting Density on Growth and Quality Characteristics of Kohlrabi in a Closed-type Plant Factory System (완전제어형 식물공장에서 콜라비의 생육과 품질에 대한 적정 재식밀도)

  • Uoon, Chan-Il;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.104-109
    • /
    • 2019
  • The crops recommended for the plant factory system are diverse. The importance of planting density in the plant factory is being recognized. The objective of this study was to determine the optimal planting density for growth and quality of kohlrabi in a closed-type plant factory system. The kohlrabi was grown under fluorescent lamps and nutrient film technique system. The growth and quality of kohlrabi were investigated under four different planting densities ($22plants/m^2(15{\times}30cm)$, $27plants/m^2(15{\times}25cm)$, and $33plants/m^2(15{\times}20cm)$). There were no significant interactions between Shoot fresh and dry weights per plant or bulb stem fresh and dry weights per plant and planting density. Shoot fresh and dry weight per area or bulb stem fresh and dry weight per area were the highest at $33plants/m^2$. There were no significant interactions between plant height, leaf area, photosynthetic rate, hardness, and chlorophyll content and planting density. Significant differences in Bulb stem height and diameter, and brix were observed. Bulb stem height and diameter and brix of kohlrabi were the highest at $22plants/m^2$. Based on our results, we conclude that the optimal planting density is $33plants/m^2$ for growth of kohlrabi, however, the optimal planting density is $22plants/m^2$ for quality of kohlrabi in a closed-type plant factory system.

A Study on the Various Light Source Radiation Conditions and use of LED Illumination for Plant Factory (식물공장 각종광원의 방사조건과 LED조명의 활용에 관한 연구)

  • Yoon, Cheol-Gu;Choi, Hong-Kyoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.14-22
    • /
    • 2011
  • The artificial lights to be introduced for the plant factories is requiring the artificial light resources with minimizing the energy consumption to reduce the greenhouse gases which is a major cause of global warming, and maximizing the efficiency in photosynthesis effect light-wave range, in which the plants can be greatly grown and developed, and having the signal light-wave range for forming the light types. the best growing and developing environment for the plants has recently realized with utilizing the LED(Lighting Emitting Diode) lamps, as a environment-friendly green lamps, which can elevating the light efficiency with using only the specific light wave range. In this study, to provide the necessary lights for the full artificial light type of the plant factory, the following research/study and experiments has been conducting. experiments of the spectrum for each light sources, and LED, The intensity of illumination, Irradiance, Photosynthesis Photon Flux Density.

State-of-The-Art Factory-Style Plant Production Systems

  • Takakura, Tadashi
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.05a
    • /
    • pp.1-10
    • /
    • 1996
  • Factory-style plant production systems of various kinds are the final goal of greenhouse production systems. These systems facilitate planning for constant productivity per unit area and labor under various outside weather conditions, although energy consumption is intensive. Physical environmental control in combination with biological control can replace the use of agricultural chemicals such as insecticides, herbicides and hormones to regulate plants. In this way, closed systems which do not use such agricultural chemicals are ideal for environmental conservation for the future. Nutrient components in plants can be regulafied by physical environmental control including nutrient solution control in hydroponics. Therefore, specific contents of nutrients for particular plants can be listed on the container and be used as the basis of customer choice in the future. Plant production systems can be classified into three types based on the type of lighting: natural lighting, supplemental lighting and completely artificial lighting (Plant Factory). The amount of energy consumption increases in this order, although the degree of weather effects is in the reverse order. In the addition to lighting, factory-style plant production systems consist of mechanized and automated systems for transplanting, environmental control, hydroponics, transporting within the facility, and harvesting. Space farming and development of pharmaceutical in bio-reactors are other applications of these types of plant production systems. Various kinds of state-of-art factory-style plant production systems are discussed in the present paper. These systems are, in general, rather sophisticated and mechaized, and energy consumption is intensive. Factory-style plant production is the final goal of greenhouse production systems and the possibilities for the future are infinte but not clear.

  • PDF

Effects of Light-Quality Control on the Plant Growth in a Plant Factory System of Artificial Light Type (인공광 식물공장내 광질 제어가 작물생육에 미치는 영향)

  • Heo, Jeong-Wook;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.270-278
    • /
    • 2021
  • BACKGROUND: Horticultural plant growth under field and/or greenhouse conditions is affected by the climate changes (e.g., temperature, humidity, and rainfall). Therefore investigation of hydroponics on field horticultural crops is necessary for year-round production of the plants regardless of external environment changes under plant factory system with artificial light sources. METHODS AND RESULTS: Common sage (Salvia plebeia), nasturtium (Tropaeolum majus), and hooker chive (Allium hookeri) plants were hydroponically culturing in the plant factory with blue-red-white LEDs (Light-Emitting Diodes) and fluorescent lights (FLs). Leaf numbers of common sage under mixture LED and FL treatments were 134% and 98% greater, respectively than those in the greenhouse condition. In hooker chives, unfolded leaf numbers were 35% greater under the artificial lights and leaf elongation was inhibited by the conventional sunlight compared to the artificial light treatments. Absorption pattern of NO3-N composition in hydroponic solution was not affected by the different light qualities. CONCLUSION(S): Plant factory system with different light qualities could be applied for fresh-leaf production of common sage, nasturtium, and hooker chive plants culturing under field and/or greenhouse. Controlled light qualities in the system resulted in significantly higher hydroponic growth of the plants comparing to conventional greenhouse condition in present.

Hierarchical Constructions of Digital Virtual Factory and its Management (디지털 가상공장의 계층적 구축과 운영에 관한 연구)

  • Kim Yu-Seok;Noh Sang-Do;Hah Sang-Dong;Shin Jong-Gye
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.960-964
    • /
    • 2005
  • Digital Virtual Manufacturing is a technology to facilitate effective product developments and agile productions by digital models representing the physical and logical schema and the behavior of real manufacturing systems including products, process, manufacturing resources and plants. A digital virtual factory as a well-designed and integrated environment is essential for successful applications of this technology. In this research, we constructed a sophisticated digital virtual factory of the shipbuilding company's section steel shop by 3-D CAD and virtual manufacturing simulation. This digital virtual factory can be applied for diverse engineering activities in design, manufacturing and control of the real factory.

  • PDF

The Efficient Management of Digital Virtual Factory Objects Using Classification and Coding System (분류 및 코딩시스템을 이용한 디지털 가상공장 객체의 효율적 관리)

  • Kim, Yu-Seok;Kang, Hyoung-Seok;Noh, Sang-Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.382-394
    • /
    • 2007
  • Nowadays, manufacturing industries undergo constantly growing pressures for global competitions, and they must shorten time and cost in product development and production to response varied customers' requirements. Digital virtual manufacturing is a technology that can facilitate effective product development and agile production by using digital models representing the physical and logical schema and the behavior of real manufacturing systems including products, processes, manufacturing resources and plants. For successful applications of this technology, a digital virtual factory as a well-designed and integrated environment is essential. In this paper, we developed a new classification and coding system for effective managements of digital virtual factory objects, and implement a supporting application to verify and apply it. Furthermore, a digital virtual factory layout management system based on the classification and coding system has developed using XML, Visual Basic.NET and FactoryCAD. By some case studies for automotive general assembly shops of a Korean automotive company, efficient management of factory objects and reduction of time and cost in digital virtual factory constructions are possible.

An Analysis on Consumers' Preference of Agricultural Products Cultivated from Plants Factory System (식물공장 농산물에 대한 소비자 선호속성 탐색)

  • Kim, Yean-Jung;Kim, Bae-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5052-5059
    • /
    • 2012
  • This study was carried out to find consumers' attributes and willingness to pay(WTP) of agricultural products cultivated from plants factory system. The agricultural products were sorted into lettuce, strawberry, Ligularia fischeri(wild edible greens), and ginseng. We made the questionaires to survey consumers' purchasing attributes and preference of agricultural products. Finally, 200 valid replies were selected to analyze consumers' attributes and to estimate marginal willingness to pay. We used conjoint analysis and multinomial logit model for empirical analysis. MWTPs of commodities are estimated as follows; Lettuce is 1,016KW(100g), Strawberry is 6,014KW(2kg), Ligularia fischeri is 3,652KW(100g), and Ginseng is 5,905KW(100g). Several attributes of consumers' purchasing behavior were identified from this study. We suggested several implications to formulate more appropriate policy of plants factory system.

Design of Remote Management System for Smart Factory

  • Hwang, Heejoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.109-121
    • /
    • 2020
  • As a decrease in labor became a serious issue in the manufacturing industry, smart factory technology, which combines IT and the manufacturing business, began to attract attention as a solution. In this study, we have designed and implemented a real-time remote management system for smart factories, which is connected to an IoT sensor and gateway, for plastic manufacturing plants. By implementing the REST API in which an IoT sensor and smart gateway can communicate, the system enabled the data measured from the IoT sensor and equipment status data to the real-time monitoring system through the gateway. Also, a web-based management dashboard enabled remote monitoring and control of the equipment and raw material processing status. A comparative analysis experiment was conducted on the suggested system for the difference in processing speed based on equipment and measurement data number change. The experiment confirmed that saving equipment measurement data using cache mechanisim offered faster processing speed. Through the result our works can provide the basic framework to factory which need implement remote management system.