DOI QR코드

DOI QR Code

Optimal Planting Density on Growth and Quality Characteristics of Kohlrabi in a Closed-type Plant Factory System

완전제어형 식물공장에서 콜라비의 생육과 품질에 대한 적정 재식밀도

  • Uoon, Chan-Il (Major of Horticultural Science, College of Applied Life Sciences, Jeju National University) ;
  • Cho, Young-Yeol (Major of Horticultural Science, College of Applied Life Sciences, Jeju National University)
  • 운찬일 (제주대학교 원예환경전공) ;
  • 조영열 (제주대학교 원예환경전공)
  • Received : 2019.01.09
  • Accepted : 2019.02.25
  • Published : 2019.04.30

Abstract

The crops recommended for the plant factory system are diverse. The importance of planting density in the plant factory is being recognized. The objective of this study was to determine the optimal planting density for growth and quality of kohlrabi in a closed-type plant factory system. The kohlrabi was grown under fluorescent lamps and nutrient film technique system. The growth and quality of kohlrabi were investigated under four different planting densities ($22plants/m^2(15{\times}30cm)$, $27plants/m^2(15{\times}25cm)$, and $33plants/m^2(15{\times}20cm)$). There were no significant interactions between Shoot fresh and dry weights per plant or bulb stem fresh and dry weights per plant and planting density. Shoot fresh and dry weight per area or bulb stem fresh and dry weight per area were the highest at $33plants/m^2$. There were no significant interactions between plant height, leaf area, photosynthetic rate, hardness, and chlorophyll content and planting density. Significant differences in Bulb stem height and diameter, and brix were observed. Bulb stem height and diameter and brix of kohlrabi were the highest at $22plants/m^2$. Based on our results, we conclude that the optimal planting density is $33plants/m^2$ for growth of kohlrabi, however, the optimal planting density is $22plants/m^2$ for quality of kohlrabi in a closed-type plant factory system.

식물공장에 재배 가능한 작물은 매우 다양할 것으로 본다. 식물공장에서 재식밀도에 대한 중요성이 인식되고 있다. 본 연구는 완전제어형 식물공장에서 콜라비의 재배에 적합한 재식밀도를 구명하기 위하여 수행되었다. 식물공장 형태는 형광등을 이용한 완전제어형태로, 박막수경재배를 이용하여 재배하였다. 재식밀도는 $22plants/m^2(15{\times}30cm)$, $27plants/m^2(15{\times}25cm)$, 그리고 $33plants/m^2(15{\times}20cm)$로 처리하였다. 식물체당 지상부 생체중과 건물중 또는 식물체당 벌브의 지상부 생체중와 건물중에는 재식밀도간 유의적인 차이를 보이지 않았다. 단위면적당 지상부 생체중과 건물중 또는 단위면적당 벌브의 지상부 생체중과 건물중에는 재식밀도가 높은 처리구($33plants/m^2$)에서 높게 나타났다. 재식밀도와 초장, 엽면적, 광합성, 경도 및 엽록소간에는 유의적인 차이를 보이지 않았다. 재식밀도와 벌브 높이와 지름 및 당도간에는 유의적인 차이를 보였다. 재식밀도가 낮은 $22plants/m^2$ 처리구에서 가장 높은 벌브 높이와 지름을 보였으며, 당도 또한 높았다. 이상의 결과를 바탕으로 결론을 내리면, 경제성을 고려한 생육적인 측면에서는 단위면적당 생산량이 많은 재식밀도 $33plants/m^2(15{\times}20cm)$가 적정하였으나, 당도와 같은 품질적인 측면에서는 재식밀도 $22plants/m^2(15{\times}30cm)$가 적정하였다.

Keywords

References

  1. Cha, M.K., S.H. Lee, and Y.Y. Cho. 2012. Selection of leaf vegetables and set-up of planting density and light intensity in the plant factory. J. Asian Agric. Biotechnol. 28:17-23(in Korean).
  2. Cho, Y.Y., D.W. Hahn, and Y.B. Lee. 1998. Effect of artificial light sources on growth of crisphead lettuce in plant factory. J. Bio. Fac. Env. 7:35-42(in Korean).
  3. Choi, C.S., J.G. Lee., Y.A. Jang, S.G. Lee, S.S. Oh, H.J. Lee, and Y.C. Um. 2013. Effect of artificial light sources on growth and quality characteristics of leaf lettuce in closed plant factory system. J. Agric. Life Sci. 47(6):23-32(in Korean). https://doi.org/10.14397/jals.2013.47.6.23
  4. Diepenbrock, W. 2000. Yield analysis of winter oilseed rape (Brassica napus L.) a review. Field Crops Res. 67:35-49. https://doi.org/10.1016/S0378-4290(00)00082-4
  5. Kim, D.B., J.W. Oh, J.S. Lee, I.J. Park, J.H. Cho, and O.H. Lee. 2014. Antioxidant activities of green and purple kohlrabi juices. Korean J. Food Sci. Technol. 46:601-608(in Korean). https://doi.org/10.9721/KJFST.2014.46.5.601
  6. Lee, S.Y., H.J. Kim, and J.H. Bae. 2010. Effect of planting density on growth and quality in hydroponics of Sedum sarmentosum. J. Korean Soc. Hortic. Sci. 28:580-584(in Korean).
  7. Motulsky, H. and A. Christopoulos. 2003. Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. GraphPad Software Inc. San Diego. CA., USA.
  8. NeSmith, D.S. 1993. Plant spacing influences watermelon yield and yield components. HortScience 28:885-887. https://doi.org/10.21273/HORTSCI.28.9.885
  9. Oh, D.J., C.Y. Lee, S.M. Kim, G.Y. Li, S.J. Lee, and D.Y. Hwang. 2010. Effects of chlorophyll fluorescence and photosynthesis characteristics by planting positions and growth stage in Panax ginseng C. A. Meyer. Korean J. Medicinal Crop Sci. 18:65-69.
  10. Park, M.H., J.W. Choi, Y.B. Kim, M.H. Kim, H.Y. Won, S.Y. Shin, and J.G. Kim. 2014. Effect of modified atmosphere packaging on postharvest quality of kohlrabi. Korean J. Hortic. Sci. Technol. 32:655-665(in Korean). https://doi.org/10.7235/hort.2014.14022
  11. Reiners, S. and D.I.M. Riggs. 1997. Plant spacing and variety affect pumpkin yield and fruit size, but supplemental nitrogen dose not. HortScience 32:1037-1039. https://doi.org/10.21273/HORTSCI.32.6.1037
  12. Takatsuji, M. 2008. Definition and meaning of the plant factory, p. 8-13. In: M. Takatsuji (ed.). Plant factory. World Science Publishment, Seoul, Korea.
  13. Uoon, C.I., M.K. Cha, Y.A. Jeon, and Y.Y. Cho. 2017. Optimal cultivar selection of Kohlrabi for hydroponics culture in a closed-type plant factory system. Protected Hortic. and Plant Fac. 26:297-300(in Korean). https://doi.org/10.12791/KSBEC.2017.26.4.297