• Title/Summary/Keyword: The Compass School

Search Result 57, Processing Time 0.028 seconds

Three-dimensional dose reconstruction-based pretreatment dosimetric verification in volumetric modulated arc therapy for prostate cancer

  • Jeong, Yuri;Oh, Jeong Geun;Kang, Jeong Ku;Moon, Sun Rock;Lee, Kang Kyoo
    • Radiation Oncology Journal
    • /
    • v.38 no.1
    • /
    • pp.60-67
    • /
    • 2020
  • Purpose: We performed three-dimensional (3D) dose reconstruction-based pretreatment verification to evaluate gamma analysis acceptance criteria in volumetric modulated arc therapy (VMAT) for prostate cancer. Materials and Methods: Pretreatment verification for 28 VMAT plans for prostate cancer was performed using the COMPASS system with a dolphin detector. The 3D reconstructed dose distribution of the treatment planning system calculation (TC) was compared with that of COMPASS independent calculation (CC) and COMPASS reconstruction from the dolphin detector measurement (CR). Gamma results (gamma failure rate and average gamma value [GFR and γAvg]) and dose-volume histogram (DVH) deviations, 98%, 2% and mean dose-volume difference (DD98%, DD2% and DDmean), were evaluated. Gamma analyses were performed with two acceptance criteria, 2%/2 mm and 3%/3 mm. Results: The GFR in 2%/2 mm criteria were less than 8%, and those in 3%/3 mm criteria were less than 1% for all structures in comparisons between TC, CC, and CR. In the comparison between TC and CR, GFR and γAvg in 2%/2 mm criteria were significantly higher than those in 3%/3 mm criteria. The DVH deviations were within 2%, except for DDmean (%) for rectum and bladder. Conclusions: The 3%/3 mm criteria were not strict enough to identify any discrepancies between planned and measured doses, and DVH deviations were less than 2% in most parameters. Therefore, gamma criteria of 2%/2 mm and DVH related parameters could be a useful tool for pretreatment verification for VMAT in prostate cancer.

On the software of geometry education in the internet age (인터넷 환경의 동적기하 S/W에 관한 연구)

  • 김태순;박경수;전명진;최건돈;한동숭
    • Journal of the Korean School Mathematics Society
    • /
    • v.6 no.2
    • /
    • pp.39-53
    • /
    • 2003
  • We study the dynamic geometry software suitable for the Internet Environment. First, we look into the necessity of dynamic geometry software and compare the functions and the features of commercial softwares, GSP, Cabri and Cinderella. Secondly, we introduce the process of development and the structure of the new software DRC(Digital Ruler and Compass) designed by authors and discuss the learning program with DRC and Internet, and view the upgrade of the software in the future.

  • PDF

Modified RHKF Filter for Improved DR/GPS Navigation against Uncertain Model Dynamics

  • Cho, Seong-Yun;Lee, Hyung-Keun
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.379-387
    • /
    • 2012
  • In this paper, an error compensation technique for a dead reckoning (DR) system using a magnetic compass module is proposed. The magnetic compass-based azimuth may include a bias that varies with location due to the surrounding magnetic sources. In this paper, the DR system is integrated with a Global Positioning System (GPS) receiver using a finite impulse response (FIR) filter to reduce errors. This filter can estimate the varying bias more effectively than the conventional Kalman filter, which has an infinite impulse response structure. Moreover, the conventional receding horizon Kalman FIR (RHKF) filter is modified for application in nonlinear systems and to compensate the drawbacks of the RHKF filter. The modified RHKF filter is a novel RHKF filter scheme for nonlinear dynamics. The inverse covariance form of the linearized Kalman filter is combined with a receding horizon FIR strategy. This filter is then combined with an extended Kalman filter to enhance the convergence characteristics of the FIR filter. Also, the receding interval is extended to reduce the computational burden. The performance of the proposed DR/GPS integrated system using the modified RHKF filter is evaluated through simulation.

A Study on the Earth's Variation Model to Adopt Ship's Digital Compass (선박용 디지털 컴퍼스에 적용하기 위한 지구편차 모형 개발)

  • Saha Rampadha;Yim Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.87-90
    • /
    • 2006
  • The Earth's spherical harmonic model of the main field and of the secular variation, of the geomagnetic field gives the intensity and geomagnetic structure at any location around the earth, assuming an undistorted, steady state field that no external sources or localized earth anamalies. To consider the practical use of a ship's digital compass in earth's magnetic field, Earth's spherical harmonic model is searched for the related practical methods and procedures as a basic study in this work.

  • PDF

A New Method for the Acquisition of Deviation Coefficients B and C at a Single Magnetic Heading (단일 자기침로에서의 자차계수 B와 C의 새로운 획득방법)

  • Yim Jeong-Bin;Sim Yeong-Ho
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.851-859
    • /
    • 2004
  • This paper describes a new method for the acquisition of deviation coefficients, B and C, using a single observed deviation at a fixed compass heading. At first it discusses some problems in the synthesis of two coefficients, B and C, from various observed deviation values in the four USS warships. Then, new theories and procedures for optimal coefficients, $\^{B}\;and\;\^{C},$ are dealt with and then the validity of the proposed method are evaluated. The result of findings indicates that the approximated coefficients, $\^{B}\;and\;\^{C},$ can give optimal approximation to an single observed deviation.

Acquisition Method for Deviation Coefficients Band B and C at a Single Bearing (단일 침로에서의 자차 계수 B 와 C 획득방법)

  • Yim Jeong-Bin;Sim Yeong-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.23-32
    • /
    • 2004
  • This paper describes a new estimation method for deviation coefficients, B and C. using only measured single deviation at a fixed compass bearing. At first, some problems in the deviation synthesis with only two coefficients, B and C, are discussed using observed deviation values measured in the four USS warships. Then, acquisition theories and procedures to obtain optimal coefficients, B and C, are expanded and then the efficiencies of the proposed prediction method are evaluated. As results from evaluations, it is shown that the approximated coefficients, B and C, can give optimal approximation to observed single deviation.

  • PDF

A Magnetic Compass Fault Detection Method on The GPS/INS/Magnetic Compass Integrated Navigation System (GPS/INS/지자기 컴파스 통합 항법 시스템에서의 지자기 컴파스 이상 검출 방법)

  • Park, Sul Gee;Jeong, Ho Cheol;Kishor, Vitalkar;Kim, Jeong Won;Hwang, Dong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1535-1536
    • /
    • 2008
  • GPS/INS/지자기 컴파스 통합 항법 시스템에서 지자기 컴파스의 이상 검출 방법을 제안하였다. 지자기 컴파스의 이상은 Hard iron과 Soft iron 효과에 의하여 발생하므로 이와 관련된 값을 통합 필터 측정치의 시험 통계치로 이용하여 검출하는 방법을 제안하였다. 제안한 방법의 효용성을 모의 실험과 차량 실험을 통하여 검증하였다.

  • PDF

Design of GPS-aided Dead Reckoning Algorithm of AUV using Extended Kalman Filter (확장칼만필터를 이용한 무인잠수정의 GPS 보조 추측항법 알고리즘 설계)

  • Kang, Hyeon-Seok;Hong, Sung-Min;Sur, Joo-No;Kim, Joon-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.28-35
    • /
    • 2017
  • This paper introduces a GPS-aided dead reckoning algorithm that asymptotically estimates the heading bias error of a magnetic compass based on geodetic north, improves the position error accumulated by dead reckoning, and helps the estimated position of an AUV to represent a position in the NED coordinate system, by receiving GPS position information when surfaced. Based on the results of a simulation, the locational error was bounded with a modest distance, after estimating the AUV position and heading bias error of the magnetic compass when surfaced. In other words, it was verified that proposed algorithm improves the position error in the NED coordinate system.

3D Navigation Real Time RSSI-based Indoor Tracking Application

  • Lee, Boon-Giin;Lee, Young-Sook;Chung, Wan-Young
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.67-77
    • /
    • 2008
  • Representation of various types of information in an interactive virtual reality environment on mobile devices had been an attractive and valuable research in this new era. Our main focus is presenting spatial indoor location sensing information in 3D perception in mind to replace the traditional 2D floor map using handheld PDA. Designation of 3D virtual reality by Virtual Reality Modeling Language (VRML) demonstrates its powerful ability in providing lots of useful positioning information for PDA user in real-time situation. Furthermore, by interpolating portal culling algorithm would reduce the 3D graphics rendering time on low power processing PDA significantly. By fully utilizing the CC2420 chipbased sensor nodes, wireless sensor network was established to locate user position based on Received Signal Strength Indication (RSSI) signals. Implementation of RSSI-based indoor tracking method is low-cost solution. However, due to signal diffraction, shadowing and multipath fading, high accuracy of sensing information is unable to obtain even though with sophisticated indoor estimation methods. Therefore, low complexity and flexible accuracy refinement algorithm was proposed to obtain high precision indoor sensing information. User indoor position is updated synchronously in virtual reality to real physical world. Moreover, assignment of magnetic compass could provide dynamic orientation information of user current viewpoint in real-time.

  • PDF