• Title/Summary/Keyword: Texture extraction

Search Result 267, Processing Time 0.025 seconds

The Development of Efficient Multimedia Retrieval System of the Object-Based using the Hippocampal Neural Network (해마신경망을 이용한 관심 객체 기반의 효율적인 멀티미디어 검색 시스템의 개발)

  • Jeong Seok-Hoon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.57-64
    • /
    • 2006
  • Tn this paper, We propose a user friendly object-based multimedia retrieval system using the HCNN(HippoCampus Neural Network. Most existing approaches to content-based retrieval rely on query by example or user based low-level features such as color, shape, texture. In this paper we perform a scene change detection and key frame extraction for the compressed video stream that is video compression standard such as MPEG. We propose a method for automatic color object extraction and ACE(Adaptive Circular filter and Edge) of content-based multimedia retrieval system. And we compose multimedia retrieval system after learned by the HCNN such extracted features. Proposed HCNN makes an adaptive real-time content-based multimedia retrieval system using excitatory teaming method that forwards important features to long-term memories and inhibitory learning method that forwards unimportant features to short-term memories controlled by impression.

Backlight Compensation by Using a Novel Region of Interest Extraction Method (새로운 관심영역 추출 방법을 이용한 역광보정)

  • Seong, Joon Mo;Lee, Seong Shin;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.321-328
    • /
    • 2017
  • We have implemented a technique to correct the brightness, saturation, and contrast of an image according to the degree of light, and further compensate the backlight. Backlight compensation can be done automatically or manually. For manual backlight compensation, we have to select the region of interest (ROI). ROI can be selected by connecting the outline of the desired object. We make users select the region delicately with the new magnetic lasso tool. The previous lasso tool has a disadvantage that the start point and the end point must be connected. However, the proposed lasso tool has the advantage of selecting the region of interest without connecting the start point and the end point. We can automatically obtain various results of backlight compensation by adjusting the number of k-means clusters for texture extraction and the threshold value for binarization.

Development of the Building Boundary Detection for Building DEM Generation (건물 DEM 생성을 위한 경계검출법 개발)

  • 유환희;손덕재;김성우
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.4
    • /
    • pp.421-429
    • /
    • 1999
  • It is estimated that, in the twenty-first century, 70% of global citizens will live in urban areas. This accelerated urbanization will require a greater need for the building DEM and orthoimagery along with Geographic Information System for urban management. The building DEM requires the detection of outlines showing building shapes. To do this, automatic and semiautomatic building extractions are usually used. However, in cases where automatic extraction is performed directly from the aerial images, accurate building outline extraction is very difficult because of shadow, roof color, and neighboring trees making it hard to discern building roofs. To overcome this problem semiautomatic building extraction was suggested in this paper. When a roof texture was homogeneous, building outline detection was performed by mouse-clicking on a part of the roof. To construct the building outlines when the texture was not homogeneous, a computer program was developed to search out corner points by clicking spots near corner points. The building DEM was generated by taking into account building outlines and heights calculated by image matching.

  • PDF

The Slope Extraction and Compensation Based on Adaptive Edge Enhancement to Extract Scene Text Region (장면 텍스트 영역 추출을 위한 적응적 에지 강화 기반의 기울기 검출 및 보정)

  • Back, Jaegyung;Jang, Jaehyuk;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.777-785
    • /
    • 2017
  • In the modern real world, we can extract and recognize some texts to get a lot of information from the scene containing them, so the techniques for extracting and recognizing text areas from a scene are constantly evolving. They can be largely divided into texture-based method, connected component method, and mixture of both. Texture-based method finds and extracts text based on the fact that text and others have different values such as image color and brightness. Connected component method is determined by using the geometrical properties after making similar pixels adjacent to each pixel to the connection element. In this paper, we propose a method to adaptively change to improve the accuracy of text region extraction, detect and correct the slope of the image using edge and image segmentation. The method only extracts the exact area containing the text by correcting the slope of the image, so that the extracting rate is 15% more accurate than MSER and 10% more accurate than EEMSER.

GLIBP: Gradual Locality Integration of Binary Patterns for Scene Images Retrieval

  • Bougueroua, Salah;Boucheham, Bachir
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.469-486
    • /
    • 2018
  • We propose an enhanced version of the local binary pattern (LBP) operator for texture extraction in images in the context of image retrieval. The novelty of our proposal is based on the observation that the LBP exploits only the lowest kind of local information through the global histogram. However, such global Histograms reflect only the statistical distribution of the various LBP codes in the image. The block based LBP, which uses local histograms of the LBP, was one of few tentative to catch higher level textural information. We believe that important local and useful information in between the two levels is just ignored by the two schemas. The newly developed method: gradual locality integration of binary patterns (GLIBP) is a novel attempt to catch as much local information as possible, in a gradual fashion. Indeed, GLIBP aggregates the texture features present in grayscale images extracted by LBP through a complex structure. The used framework is comprised of a multitude of ellipse-shaped regions that are arranged in circular-concentric forms of increasing size. The framework of ellipses is in fact derived from a simple parameterized generator. In addition, the elliptic forms allow targeting texture directionality, which is a very useful property in texture characterization. In addition, the general framework of ellipses allows for taking into account the spatial information (specifically rotation). The effectiveness of GLIBP was investigated on the Corel-1K (Wang) dataset. It was also compared to published works including the very effective DLEP. Results show significant higher or comparable performance of GLIBP with regard to the other methods, which qualifies it as a good tool for scene images retrieval.

Content-based Image Retrieval using the Color and Wavelet-based Texture Feature (색상특징과 웨이블렛 기반의 질감특징을 이용한 영상 검색)

  • 박종현;박순영;조완현;오일석
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.125-133
    • /
    • 2003
  • In this paper we propose an efficient content-based image retrieval method using the color and wavelet based texture features. The color features are obtained from soft-color histograms of the global image and the wavelet-based texture features are obtained from the invariant moments of the high-pass sub-band through the spatial-frequency analysis of the wavelet transform. The proposed system, called a color and texture based two-step retrieval(CTBTR), is composed of two-step query operations for an efficient image retrieval. In the first-step matching operation, the color histogram features are used to filter out the dissimilar images quickly from a large image database. The second-step matching operation applies the wavelet based texture features to the retained set of images to retrieve all relevant images successfully. The experimental results show that the proposed algorithm yields more improved retrieval accuracy with computationally efficiency than the previous methods.

Non-Parametric Texture Extraction using Neural Network (신경 회로망을 사용한 비 파라메테 텍스춰 추출)

  • Jeon, Dong-Keun;Hong, Sun-Pyo;Song, Ja-Yoon;Kim, Sang-Jin;Kim, Ki-Jun;Kim, Song-Chol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.5-11
    • /
    • 1995
  • In this paper, a method using a neural network was applied for the purpose of urilizing spatial features. The adopted model of neural network the three-layered architecture, and the training algorithm is the back-propagation algorithm. Co-occurrence matrix which is generated from original imge was used for imput pattern to the neural network in order to tolerate variations of patterns like rotation of displacement. Co-occurrence matrix is explained in appendix. To evaluate this method, classification was executed with this method and texture features method over the city area and sand area, which cannot be separated with the conventional method mentioned aboved. In the results of this method and texture features proposed by Haralick the method using texture features was separation rate of 67%~89%. On the contrary, the method using neural network proposed in this research was stable and high separation rate of 80%~98%.

  • PDF

Effective Road Area Extraction in Satellite Images Using Texture-Based BP Neural Network (텍스쳐 기반 BP 신경망을 이용한 위성영상의 도로영역 추출)

  • Xu, Zheng;Kim, Bo-Ram;Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • This paper proposes a road detection method using BP(Back-Propagation) neural network based on texture information of the each candidate road region segmented for satellite images. To segment the candidate road regions, the histogram-based binarization method proposed by N.Otsu is firstly performed and the neighboring regions surrounding road regions are then removed. And after extracting the principal color using the histogram of the segmented foreground, the candidate road regions are classified into the regions within ${\pm}25$ of the principal color. Finally, the road regions are segmented using BP neural network based on texture information of the candidate regions. The texture information in this paper is calculated using co-occurrence matrix and is used as an input data of the BP neural network. The proposed method is based on the fact that the road has the constant intensity and shape. The experiment demonstrated the validity of the proposed method and showed 90% detection accuracy for the various images.

  • PDF

A Study on Game Character Classification Based on Texture and Edge Orientation Feature (질감 및 에지 방향 특징에 기반한 게임 캐릭터 분류에 관한 연구)

  • Park, Chang-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1318-1324
    • /
    • 2012
  • This paper proposes a novel method for Game character classification based on texture and edge orientation feature. The character dose not move(NPC) and move the character is classified. Classification of property within the character of straight line segments are used to extract features. First, the character inside edge feature extraction and then calculates EEDH, SSPD. The extracted attribute represents the energy of a particular direction. Thus, these properties were used to classify of NPC and Monster. The proposed method, the user can reduce the unnecessary time in the game.

Evaluation of Extraction Mode for SVE Process by On-Line Monitoring System (온라인 모니터링에 의한 디젤오염토양의 토양증기추출 공정시 추출모드 평가)

  • Park, Joon-Seok;Kim, Seung-Ho;Park, Young-Goo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.90-96
    • /
    • 2003
  • This study was performed to evaluate effect of extraction mode on SVE efficiency for fuel-contaminated soil. A gas station was selected for this study. As a result of pressure test in well head, soil texture of contaminated site under the gas station was very different from site to site. SVE system was operated in intermittent mode (1hr extraction / 3hr rest) or continuous mode. Capacity of air blower was $1m^3/min$. Extration mode test was conducted in two severe contaminated sites. In both two sites, cumulative TPHgas mass of intermittent extraction mode was higher than that of continuous mode. Considering long term operation of SVE in a field, in general, it was thought that intermittent extraction mode was effective in view of vaporized TPHgas mass and electrical cost.

  • PDF