• Title/Summary/Keyword: Texture Image

검색결과 1,150건 처리시간 0.029초

멀티미디어 텔레컨퍼런스를 위한 새로운 영상 압축 기술 (A New Image Compression Technique for Multimedia Teleconferences)

  • 김용호;장종환
    • 자연과학논문집
    • /
    • 제5권2호
    • /
    • pp.33-38
    • /
    • 1992
  • 텍스처럴 리전의 러프니스와 사람의 시각 시스템의 특성에 기초하여 세크멘테이션을 수행하는, 멀티미디어 텔레컨퍼런스를 위한 새로운 텍스처 세그멘테이션-베이스 영상 코우딩 기술을 제안한다. 세그멘테이션은, 텍스처의 영역이, 지각된 콘스탄트 인텐시티와 스무드 텍스처 및 러프 텍스처의 세가지 텍스처 클래스로 분류되도록 프랙탈 디멘전을 쓰레쉬호울딩하여 이루어진다. 각 세그먼트 바운더리와 각 텍스처 클래스를 위한 효과적인 코우딩 기술을 개발하여 높은 압축률과 좋은 영상 품질을 갖는 영상 코우딩 시스템을 달성하고, 이 기술의 코우딩 효율을 잘 확립된 기술 (디스크릿 코사인 트랜스폼(DCT) 영상 코우딩)의 코우딩 효율과 비교한다.

  • PDF

컬러 히스토그램과 컬러 텍스처를 이용한 내용기반 영상 검색 기법 (Cotent-based Image Retrieving Using Color Histogram and Color Texture)

  • 이형구;윤일동
    • 전자공학회논문지S
    • /
    • 제36S권9호
    • /
    • pp.76-90
    • /
    • 1999
  • 본 논문은 컬러 히스토그램과 ‘컬러 텍스쳐’을 이용하는 새로운 내용기반 영상 검색 기법을 제안한다. 제안한는 방법은 영상의 컬러 히스토그램을 k-means 군집화하여 얻은 컬러 벡터로 히스토그램을 대표하고, 각 대표 컬러 벡터를 중심으로 화소 색상과의 거리를 이용해 컬러 텍스처를 만든다. 그러므로, 컬러 텍스처란 영상의 컬러 히스토그램에 의해 두드러지는 텍스처 성분을 의미하며 본 논문에서는 컬러 텍스처를 Gaussian Markov Random Field (GMRF) 모델로 해석한다. 제안하는 알고리듬은 영역화와 같은 기하학적 정보를 추출하는 과정이 없으므로 고속의 검색에 적합하며, 기존의 컬러 히스토그램만을 이용한 기법이나 영상의 밝기 성분에서 나타나는 텍스처를 이용한 방법에 비해 효과적인 검색 결과를 나타낸다.

  • PDF

의복의 조형요소에 따른 캐주얼이미지 분류 (Casual Image Classification by Clothing Design Elements)

  • 이경림;박숙현
    • 한국의류학회지
    • /
    • 제32권11호
    • /
    • pp.1771-1781
    • /
    • 2008
  • The purpose of this study was to classify the casual image by clothing design elements. This research was done by survey method with 30 kinds of casual image photos selected in fashion magazines. The data was analyzed by Reliability Analysis, Factor Analysis, ANOVA, Duncan's test and MDS. The results of this study are as follows: 1. Casual image was classified by 6 factors. Those were classic-casual, modern-casual, romantic-casual, vintage-casual, sexy-casual and active-casual images. 2. Classic-casual image was well-expressed by A silhouette, fit, chromatic and chromatic color coordinations and hard texture. Modern-casual image was well-expressed by H silhouette, fit and achromatic and achromatic color coordinations. Romantic-casual image was well-expressed by A silhouette, fit and soft texture. Vintage-casual image was well-expressed by H silhouette, combination apparel-fit, chromatic and chromatic color coordinations and fade-out texture. Sexy-casual image was well-expressed by fitted silhouette, tight apparel-fit and combination texture. 3. Casual image was positioned into mostly dynamic and modern on image scale.

수리 형태론을 이용한 texture 영상의 방향성 결함검출 (A directional defect detection in texture image using mathematical morphology)

  • 김한균;윤정민;오주환;최태영
    • 전자공학회논문지B
    • /
    • 제33B권4호
    • /
    • pp.141-147
    • /
    • 1996
  • In this paper an improved morphological algorithm for directional defect detection is proposed, where the defect is parallel to the texture image. The algorithm is based on obtaining the background image while removing the defect by comparing every directional morphological result with max or min except that of defect. The defect can of defect and the background image. For a computer simulation, it is shown that the proposed method has better performance than the conventional algorithm.

  • PDF

SOM의 통계적 특성과 다중 스케일 Bayesian 영상 분할 기법을 이용한 텍스쳐 분할 (Texture Segmentation Using Statistical Characteristics of SOM and Multiscale Bayesian Image Segmentation Technique)

  • 김태형;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.43-54
    • /
    • 2005
  • 이본 논문에서는 Bayesian 영상 분할법과 SOM(Self Organization feature Map)을 이용한 텍스쳐(Texture) 분할 방법을 제안한다. SOM의 입력으로 다중 스케일에서의 웨이블릿 계수를 사용하고, 훈련된 SOM으로부터 관측 데이터에 대한 우도(尤度, likelihood)와 사후확률을 구하는 방법을 제시한다. 훈련된 SOM들로부터 구한 사후확률과 MAP(Maximum A Posterior) 분류법을 이용하여 텍스쳐 분할을 얻는다. 그리고 문맥 정보를 이용하여 텍스쳐 분할 결과를 개선하였다. 제안 방법은 HMT(Hidden Markov Tree)을 이용한 텍스쳐 분할보다 더 우수한 결과를 보여준다. 또한 SOM과 HMTseg라고 불리는 다중스케일 Bayesian 영상 분할 기법을 이용한 텍스쳐 분할 결과는 HMT와 HMTseg을 이용한 결과보다 더 우수한 성능을 보여준다.

영상 객체의 특징 추출을 이용한 내용 기반 영상 검색 시스템 (Content-Based Image Retrieval System using Feature Extraction of Image Objects)

  • 정세환;서광규
    • 산업경영시스템학회지
    • /
    • 제27권3호
    • /
    • pp.59-65
    • /
    • 2004
  • This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. These schemes are used for object-based image retrieval. Features for image retrieval are three color features from HSV color model and five texture features from Gray-level co-occurrence matrices. Once the feature extraction scheme is performed in the image, 8-dimensional feature vectors represent each pixel in the image. VQ algorithm is used to cluster each pixel data into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to object within the image. The proposed method can retrieve similar images even in the case that the objects are translated, scaled, and rotated.

Quadtree를 사용한 색상-공간 특징과 객체 MBR의 질감 정보를 이용한 영상 검색 (Image Retrieval based on Color-Spatial Features using Quadtree and Texture Information Extracted from Object MBR)

  • 최창규;류상률;김승호
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권6호
    • /
    • pp.692-704
    • /
    • 2002
  • 본 논문은 이미지에서 Quadtree를 이용한 색상-공간 특징 추출과 이미지 내에 포함되어 있는 객체의 MBR(Minimum Boundary Rectangie)을 구하여 질감 정보를 추출하는 방법을 제안한다. 제안된 방법은 각 이미지로부터 DC 이미지를 만들고 색상 좌표계를 변환한 후, Quadtree를 이용하여 영역을 분할한다. 영역의 분한 기준은 제안된 조건에 의하여 이루어지며, 각 분할된 영역으로부터 대표 색상을 추출한다. 그리고, 이미지 분할(segmentation)을 통하여 각 이미지의 객체, 객체를 포함한 배경, 또는 일부 배경의 MBR을 구하고, 제안된 알고리즘에 의하여 검색된 MBR의 웨이블릿 계수(wavelet coefficients)를 계산한다. 이 계수들이 MBR의 질감 정보가 되며, 추출된 색상-공간 정보와 질감 정보를 이용하여 제안된 유사도 계산 방법을 통하여 결과를 나타내게 된다. 제안된 방법은 원 이미지(original image)에 비해 특징 정보의 저장 공간을 53% 감소시켰으며, 성능은 유사하게 나타났다. 그리고, 질감 정보를 추가함으로써, 색상-공간 특징의 단점인 객체 정보의 손실을 보완하였고, 질의 이미지의 객체를 포함한 검색 결과를 보였다.

GLCM/GLDV 기반 Texture 알고리즘 구현과 고 해상도 영상분석 적용 (Implementation of GLCM/GLDV-based Texture Algorithm and Its Application to High Resolution Imagery Analysis)

  • 이기원;전소희;권병두
    • 대한원격탐사학회지
    • /
    • 제21권2호
    • /
    • pp.121-133
    • /
    • 2005
  • 화소들 사이의 관계를 고려해 Texture 영상을 생성해 내는 것을 의미하는 Texture 영상화는 유용한 영상 분석 방법 중의 하나로 잘 알려져 있고, 대부분의 상업적인 원격 탐사 소프트웨어들은 GLCM이라는 Texture 분석 기능을 제공하고 있다. 본 연구에서는, GLCM 알고리즘에 기반한 Texture 영상화 프로그램이 구현되었고, 추가적으로 GLDV에 기반을 둔 Texture 영상화 모듈 프로그램을 제공한다. 본 프로그램에서는 Homogeneity, Dissimilarity, Energy, Entropy, Angular Second Moment(ASM), Contrast 등과 같은 GLCN/GLDV의 6가지 Texture 변수에 따라 각각 이에 해당하는 Texture 영상들을 생성해 낸다. GLCM/GLDV Texture 영상 생성에서는 방향 의존성을 고려해야 하는데, 이 프로그램에서는 기본적으로 동-서, 북동-남서, 북-남, 북서-남동 등의 기본적인 방향설정을 제공한다. 또한 이 논문에서 새롭게 구현된 커널내의 모든 방향을 고려해서 평균값을 계산하는 Omni 방향 모드와 커널내의 중심 화소를 정하고_그 주변 화소에 대한 원형 방향을 고려하는 원형방향 모드를 지원한다. 또한 본 연구에서는 여러 가지 변수와 모드에 따라 얻어진 Texture 영상의 분석을 위하여 가상 영상 및 실제 위성 영상들에 의하여 생성된 Texture 영상간의 특징 분석과 상호상관 분석을 수행하였다. Texture 영상합성 응용시에는 영상의 생성시에 적용된 변수들에 대한 이해와 영상간의 상관도를 분석하는 과정이 필요할 것으로 생각된다.

Texture-based Hatching for Color Image and Video

  • Yang, Hee-Kyung;Min, Kyung-Ha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권4호
    • /
    • pp.763-781
    • /
    • 2011
  • We present a texture-based hatching technique for color images and video. Whereas existing approaches produce monochrome hatching effects in considering of triangular mesh models by applying strokes of uniform size, our scheme produces color hatching effects from photographs and video using strokes with a range of sizes. We use a Delaunay triangulation to create a mesh of triangles with sizes that reflect the structure of an input image. At each vertex of this triangulation, the flow of the image is analyzed and a hatching texture is then created with the same alignment, based on real pencil strokes. This texture is given a modified version of a color sampled from the image, and then it is used to fill all the triangles adjoining the vertex. The three hatching textures that accumulate in each triangle are averaged and the result of this process across all the triangles forms the output image. We can also add a paper texture effect and enhance feature lines in the image. Our algorithm can also be applied to video. The results are visually pleasing hatching effects similar to those seen in color pencil drawings and oil paintings.

의도적인 공감각 기반 영상-음악 변환 시스템 구현 (Implementation of the System Converting Image into Music Signals based on Intentional Synesthesia)

  • 배명진;김성일
    • 전기전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.254-259
    • /
    • 2020
  • 본 논문은 사전에 학습된 기억으로 공감각 현상을 지각할 수 있는 의도적인 공감각으로 영상에서 음악으로 변환하는 시스템을 구현하였다. 영상에서 변환정보로 색상(Color), 질감(Texture), 모양(Shape)을 사용하여 음악의 멜로디(Melody), 하모니(Harmony), 리듬(Rhythm) 정보로 변환하였다. 정적인 영상에서 단조로운 음이 반복되는 것을 최소화하고 영상에 있는 정보를 표현하기 위해 색상의 분포도에 따라 확률적으로 멜로디를 선택하여 출력함으로써 자연스럽게 음을 구성할 수 있도록 하였고, 영상에서 질감은 통계적 질감 특징 추출방식인 GLCM(Gray-Level Co-occurrence Matrix)의 7가지 특징으로 하모니의 장조와 단조를 표현하였다. 마지막으로 모양은 영상의 외곽선을 추출한 후 주파수 성분 분석인 허프 변환(Hough Transform)을 이용해 선 성분을 검출하여 각도의 분포에 따라 리듬을 선택하는 방식으로 음악을 생성하였다.