• 제목/요약/키워드: Texture Detection

검색결과 239건 처리시간 0.03초

Adaptive High-order Variation De-noising Method for Edge Detection with Wavelet Coefficients

  • Chenghua Liu;Anhong Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권2호
    • /
    • pp.412-434
    • /
    • 2023
  • This study discusses the high-order diffusion method in the wavelet domain. It aims to improve the edge protection capability of the high-order diffusion method using wavelet coefficients that can reflect image information. During the first step of the proposed diffusion method, the wavelet packet decomposition is a more refined decomposition method that can extract the texture and structure information of the image at different resolution levels. The high-frequency wavelet coefficients are then used to construct the edge detection function. Subsequently, because accurate wavelet coefficients can more accurately reflect the edges and details of the image information, by introducing the idea of state weight, a scheme for recovering wavelet coefficients is proposed. Finally, the edge detection function is constructed by the module of the wavelet coefficients to guide high-order diffusion, the denoised image is obtained. The experimental results showed that the method presented in this study improves the denoising ability of the high-order diffusion model, and the edge protection index (SSIM) outperforms the main methods, including the block matching and 3D collaborative filtering (BM3D) and the deep learning-based image processing methods. For images with rich textural details, the present method improves the clarity of the obtained images and the completeness of the edges, demonstrating its advantages in denoising and edge protection.

Detecting colorectal lesions with image-enhanced endoscopy: an updated review from clinical trials

  • Mizuki Nagai;Sho Suzuki;Yohei Minato;Fumiaki Ishibashi;Kentaro Mochida;Ken Ohata;Tetsuo Morishita
    • Clinical Endoscopy
    • /
    • 제56권5호
    • /
    • pp.553-562
    • /
    • 2023
  • Colonoscopy plays an important role in reducing the incidence and mortality of colorectal cancer by detecting adenomas and other precancerous lesions. Image-enhanced endoscopy (IEE) increases lesion visibility by enhancing the microstructure, blood vessels, and mucosal surface color, resulting in the detection of colorectal lesions. In recent years, various IEE techniques have been used in clinical practice, each with its unique characteristics. Numerous studies have reported the effectiveness of IEE in the detection of colorectal lesions. IEEs can be divided into two broad categories according to the nature of the image: images constructed using narrow-band wavelength light, such as narrow-band imaging and blue laser imaging/blue light imaging, or color images based on white light, such as linked color imaging, texture and color enhancement imaging, and i-scan. Conversely, artificial intelligence (AI) systems, such as computer-aided diagnosis systems, have recently been developed to assist endoscopists in detecting colorectal lesions during colonoscopy. To gain a better understanding of the features of each IEE, this review presents the effectiveness of each type of IEE and their combination with AI for colorectal lesion detection by referencing the latest research data.

A TRUS Prostate Segmentation using Gabor Texture Features and Snake-like Contour

  • Kim, Sung Gyun;Seo, Yeong Geon
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.103-116
    • /
    • 2013
  • Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation in TRUS images using Gabor feature extraction and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. The speckle reduction for preprocessing step has been achieved by using stick filter and top-hat transform has been implemented for smoothing the contour. A Gabor filter bank for extraction of rotation-invariant texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. Finally, the boundary of prostate is extracted by the snake-like contour algorithm. A number of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with less than 10.2% of the accuracy which is relative to boundary provided manually by experts.

레이와 텍스처 기법을 이용한 실시간 스프레이 페인팅 (Real-time Spray Painting using Rays and Texture Map)

  • 김대석;박진아
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권8호
    • /
    • pp.818-822
    • /
    • 2008
  • 본 논문에서는 가상환경에서 페인트를 분사하여 시간으로 물체를 도색 하는 시뮬레이션을 위한 충돌처리 및 시각화 알고리즘을 제시한다. 이를 통하여 물체에 페인트가 뿌려지면서 도색 되는 모습을 사실적으로 표현해 줄뿐만 아니라, 페인트 누적 모델을 이용하여 물체에 누적된 페인트의 두께 정보까지 시뮬레이션 하여 시각화함으로써 가상훈련 시스템에 적용할 수 있도록 한다. 분사되는 유체시뮬레이션을 위해서 기존에는 파티클 시스템이 이용되고 있으나 실시간으로 도색이 되는 과정을 시각화하기 위해서는 수백만 개의 파티클에 대하여 충돌 검사를 수행해야 하기 때문에 적절하지 않다. 따라서 본 연구에서는 소수의 레이와 텍스처 기법을 이용하여 효율적으로 충돌 검사를 수행하는 알고리즘을 제안하고 이를 구현하였으며 실시간 페인트 시뮬레이션 구현 결과와 수행 시간 분석을 통하여 알고리즘의 효율성을 검증하였다.

Gabor Filter를 이용한 소실선 검출 기반의 깊이 지도 생성 기법 (Generation Method of Depth Map based on Vanishing Line using Gabor Filter)

  • 유태훈;이상훈
    • 한국융합학회논문지
    • /
    • 제3권1호
    • /
    • pp.13-17
    • /
    • 2012
  • 본 논문에서는 기하학적 단서인 소실선과 텍스처를 이용하여 깊이 지도를 생성하는 방법을 제안한다. 소실선은 영상 내 존재하는 평행한 직선들에 의해 생성되는 것으로 영상에서 Gabor Filter를 통해 특정 각도의 경계를 추출하고 이를 허프 변환을 통해 직선을 추출하여 소실선을 검출해낸다. 검출된 소실선에 따라 초기 깊이 지도를 생성하고 텍스처 단서인 슈퍼 픽셀을 이용한 상대적 깊이 지도를 결합하여 최종 깊이 지도를 생성한다. 소실선을 이용한 초기 깊이지도와 슈퍼 픽셀을 이용한 상대적 깊이 지도를 결합함으로써 보다 신뢰성 있는 깊이 지도가 생성되었다.

APLICATION OF FRACTAL DIMENSION ESTIMATION ALGORITMS TO EVALUATING HUMAN SKIN STATE

  • Araghy, Ali Parchamy;Sato, Mie;Kasuga, Masao
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.655-658
    • /
    • 2009
  • Fractal dimension has been used for texture analysis as it is highly correlated with human perception of surface roughness and applied to quantifying the structures of wide range of objects in biology and medicine. On the other hand, the evaluation of the human skin state is based solely on the subjective assessment of clinicians; this assessment may vary from moment to moment and from rater to rater. Therefore we attempt to analysis of skin texture image using fractal dimension and discuss its application to evaluating human skin state. It can be helpful for extracting human features and also can be useful for detection of many human skin diseases. This paper presents a method to calculate fractal dimension of skin with use of camera lens magnification. We take multiple pictures frequently from skin with different camera lens magnification as a magnification factor of fractal set, and counting the number of objects (cells) in each picture as a number of self similar pieces of fractal set.

  • PDF

타이어 밴드 직물의 불량유형 분류를 위한 불량 픽셀 하이라이팅 (Highlighting Defect Pixels for Tire Band Texture Defect Classification)

  • 소로;고재필
    • 한국항행학회논문지
    • /
    • 제26권2호
    • /
    • pp.113-118
    • /
    • 2022
  • 사람은 독서나 필기 중 중요 문구를 형광펜으로 칠하는 것에서 착안하여, 본 논문에서는 복잡한 배경 질감을 가진 영상에서의 불량유형을 효과적으로 분류하기 위해 불량 픽셀 영역을 하이라이팅 하여 신경망을 훈련하는 방법을 제안한다. 제안 방법의 가능성을 검증하기 위하여 불량유형 구분이 매우 어려운 타이어 밴드 직물의 불량유형 분류에 제안 방법을 적용한다. 또한, 타이어 밴드 직물 영상에 특화된 백라이트 하이라이팅 방법을 제안한다. 백라이트 하이라이트 영상은 GradCAM 기법과 간단한 영상처리를 이용하여 획득할 수 있다. 실험에서 우리는 제안하는 하이라이팅 기법이 분류 정확도뿐만 아니라 훈련속도 면에서 기존 방법보다 우수함을 보였다. 인식률 면에서는 제안 방법이 기존 방법 대비 최대 13.4%의 향상을 달성하였다. 타이어 밴드 직물 영상에 특화된 백라이트 하이라이팅 기법이 윤곽 하이라이팅 기법보다 정확도 측면에서 우수함을 보였다.

GPU를 이용한 이미지 공간 충돌 검사 기법 (GPU-based Image-space Collision Detection among Closed Objects)

  • 장한용;정택상;한정현
    • 한국HCI학회논문지
    • /
    • 제1권1호
    • /
    • pp.45-52
    • /
    • 2006
  • 본 논문은 GPU를 활용한 이미지 공간 실시간 충돌 검사 기법을 설명한다. 닫힌 물체들이 충돌하지 않는 경우, 뷰잉 레이를 따라 물체의 앞면과 뒷면이 번갈아 가며 나타나는 것을 확인 할 수 있다. 그러나 물체 간 충돌이 일어나는 경우 이 현상이 깨어지게 된다. 이러한 특성에 기반하여 본 논문은 충돌 검사에 필요한 최소한의 표면 정보만 텍스쳐에 기록하여 충돌 검사를 수행하는 기법을 제안한다. 이 기법은 GPU의 framebuffer object 와 vertex buffer object, 그리고 occlusion query 등의 기능을 활용한다. 이러한 GPU의 기능을 이용하면 통상적인 이미지 기반 충돌검사에서 사용하는 multi-pass rendering 과 context switch 부하를 줄일 수 있다. 즉 기존의 이미지 기반 충돌 검사에 비해 적은 렌더링 횟수와 적은 렌더링 부하를 가진다. 본 논문에서 제안된 알고리즘은 변형체나 복잡한 물체에도 적용이 가능하며, 3D 게임이나 가상현실과 같은 실시간 어플리케이션에 적용될 수 있는 성능을 발휘한다.

  • PDF

적외선 영상, 라이다 데이터 및 특성정보 융합 기반의 합성곱 인공신경망을 이용한 건물탐지 (Building Detection by Convolutional Neural Network with Infrared Image, LiDAR Data and Characteristic Information Fusion)

  • 조은지;이동천
    • 한국측량학회지
    • /
    • 제38권6호
    • /
    • pp.635-644
    • /
    • 2020
  • 딥러닝(DL)을 이용한 객체인식, 탐지 및 분할하는 연구는 여러 분야에서 활용되고 있으며, 주로 영상을 DL 모델의 학습 데이터로 사용하고 있지만, 본 논문은 영상뿐 아니라 공간정보 특성을 포함하는 다양한 학습 데이터(multimodal training data)를 향상된 영역기반 합성곱 신경망(R-CNN)인 Detectron2 모델 학습에 사용하여 객체를 분할하고 건물을 탐지하는 것이 목적이다. 이를 위하여 적외선 항공영상과 라이다 데이터의 내재된 객체의 윤곽 및 통계적 질감정보인 Haralick feature와 같은 여러 특성을 추출하였다. DL 모델의 학습 성능은 데이터의 수량과 특성뿐 아니라 융합방법에 의해 좌우된다. 초기융합(early fusion)과 후기융합(late fusion)의 혼용방식인 하이브리드 융합(hybrid fusion)을 적용한 결과 33%의 건물을 추가적으로 탐지 할 수 있다. 이와 같은 실험 결과는 서로 다른 특성 데이터의 복합적 학습과 융합에 의한 상호보완적 효과를 입증하였다고 판단된다.

컴퓨터단층영상에서 TIA를 이용한 간경화의 컴퓨터보조진단 (Computer-Aided Diagnosis for Liver Cirrhosis using Texture features Information Analysis in Computed Tomography)

  • 김창수;고성진;강세식;김정훈;김동현;최석윤
    • 한국콘텐츠학회논문지
    • /
    • 제12권4호
    • /
    • pp.358-366
    • /
    • 2012
  • 간경화(liver cirrhosis)는 섬유조직의 증식과 재생성 결절 형성의 형태학적인 변화로 2차적으로 간내혈관의 변형 및 간기능의 저하가 나타나는 질병이며, 정맥류, 복수와 부종, 간성뇌증, 간암 등의 합병증 동반을 미연에 방지하는 것이 간경변증 진단 및 치료에 핵심이다. 일반적으로 간 컴퓨터단층영상이 간경변의 진단 및 병기를 결정하는 방법으로 사용한다. 그러므로 본 연구에서는 간경화의 자동 인식을 위하여 PCA와 TIA 알고리즘을 이용한 특징추출을 통하여 간경변의 자동 검출능력을 알아보고, 각 알고리즘간의 성능을 비교하였다. 실험은 학습영상과 테스트영상으로 구분한다. 고유영상을 생성시키기 위한 학습영상으로 정상영상이 사용되고, 테스트영상으로는 간경화영상이 사용된다. 간 CT 영상에서 간의 질병 부위를 균등하게 ROI 설정하고, $50{\times}50$ 픽셀 크기로 영상을 저장하여 실험하였다. 실험결과로 PCA는 간경화 검출율이 35%로 질병 인식으로 부적합하며, TIA 알고리즘의 AGL, TM, MU, EN는 100% 질병 인식력을 나타내어 간경화 자동 진단 인식으로 가능했다. 또한 결과를 임상에 적용하여 간경변의 컴퓨터보조진단으로 활용한다면 영상의학과 의사에게 업무 부담을 줄이고, 일차적 간경변의 스크리닝 도구로서 활용이 가능할 것이다. 그리고 TIA 알고리즘을 활용한 자동진단은 질병 진단의 전단계로서 예비판독의 정보를 제공하며 간경변의 조기 진단 및 예방이 가능다고 판단된다.