KSII Transactions on Internet and Information Systems (TIIS)
/
제17권2호
/
pp.412-434
/
2023
This study discusses the high-order diffusion method in the wavelet domain. It aims to improve the edge protection capability of the high-order diffusion method using wavelet coefficients that can reflect image information. During the first step of the proposed diffusion method, the wavelet packet decomposition is a more refined decomposition method that can extract the texture and structure information of the image at different resolution levels. The high-frequency wavelet coefficients are then used to construct the edge detection function. Subsequently, because accurate wavelet coefficients can more accurately reflect the edges and details of the image information, by introducing the idea of state weight, a scheme for recovering wavelet coefficients is proposed. Finally, the edge detection function is constructed by the module of the wavelet coefficients to guide high-order diffusion, the denoised image is obtained. The experimental results showed that the method presented in this study improves the denoising ability of the high-order diffusion model, and the edge protection index (SSIM) outperforms the main methods, including the block matching and 3D collaborative filtering (BM3D) and the deep learning-based image processing methods. For images with rich textural details, the present method improves the clarity of the obtained images and the completeness of the edges, demonstrating its advantages in denoising and edge protection.
Colonoscopy plays an important role in reducing the incidence and mortality of colorectal cancer by detecting adenomas and other precancerous lesions. Image-enhanced endoscopy (IEE) increases lesion visibility by enhancing the microstructure, blood vessels, and mucosal surface color, resulting in the detection of colorectal lesions. In recent years, various IEE techniques have been used in clinical practice, each with its unique characteristics. Numerous studies have reported the effectiveness of IEE in the detection of colorectal lesions. IEEs can be divided into two broad categories according to the nature of the image: images constructed using narrow-band wavelength light, such as narrow-band imaging and blue laser imaging/blue light imaging, or color images based on white light, such as linked color imaging, texture and color enhancement imaging, and i-scan. Conversely, artificial intelligence (AI) systems, such as computer-aided diagnosis systems, have recently been developed to assist endoscopists in detecting colorectal lesions during colonoscopy. To gain a better understanding of the features of each IEE, this review presents the effectiveness of each type of IEE and their combination with AI for colorectal lesion detection by referencing the latest research data.
Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation in TRUS images using Gabor feature extraction and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. The speckle reduction for preprocessing step has been achieved by using stick filter and top-hat transform has been implemented for smoothing the contour. A Gabor filter bank for extraction of rotation-invariant texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. Finally, the boundary of prostate is extracted by the snake-like contour algorithm. A number of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with less than 10.2% of the accuracy which is relative to boundary provided manually by experts.
본 논문에서는 가상환경에서 페인트를 분사하여 시간으로 물체를 도색 하는 시뮬레이션을 위한 충돌처리 및 시각화 알고리즘을 제시한다. 이를 통하여 물체에 페인트가 뿌려지면서 도색 되는 모습을 사실적으로 표현해 줄뿐만 아니라, 페인트 누적 모델을 이용하여 물체에 누적된 페인트의 두께 정보까지 시뮬레이션 하여 시각화함으로써 가상훈련 시스템에 적용할 수 있도록 한다. 분사되는 유체시뮬레이션을 위해서 기존에는 파티클 시스템이 이용되고 있으나 실시간으로 도색이 되는 과정을 시각화하기 위해서는 수백만 개의 파티클에 대하여 충돌 검사를 수행해야 하기 때문에 적절하지 않다. 따라서 본 연구에서는 소수의 레이와 텍스처 기법을 이용하여 효율적으로 충돌 검사를 수행하는 알고리즘을 제안하고 이를 구현하였으며 실시간 페인트 시뮬레이션 구현 결과와 수행 시간 분석을 통하여 알고리즘의 효율성을 검증하였다.
본 논문에서는 기하학적 단서인 소실선과 텍스처를 이용하여 깊이 지도를 생성하는 방법을 제안한다. 소실선은 영상 내 존재하는 평행한 직선들에 의해 생성되는 것으로 영상에서 Gabor Filter를 통해 특정 각도의 경계를 추출하고 이를 허프 변환을 통해 직선을 추출하여 소실선을 검출해낸다. 검출된 소실선에 따라 초기 깊이 지도를 생성하고 텍스처 단서인 슈퍼 픽셀을 이용한 상대적 깊이 지도를 결합하여 최종 깊이 지도를 생성한다. 소실선을 이용한 초기 깊이지도와 슈퍼 픽셀을 이용한 상대적 깊이 지도를 결합함으로써 보다 신뢰성 있는 깊이 지도가 생성되었다.
Fractal dimension has been used for texture analysis as it is highly correlated with human perception of surface roughness and applied to quantifying the structures of wide range of objects in biology and medicine. On the other hand, the evaluation of the human skin state is based solely on the subjective assessment of clinicians; this assessment may vary from moment to moment and from rater to rater. Therefore we attempt to analysis of skin texture image using fractal dimension and discuss its application to evaluating human skin state. It can be helpful for extracting human features and also can be useful for detection of many human skin diseases. This paper presents a method to calculate fractal dimension of skin with use of camera lens magnification. We take multiple pictures frequently from skin with different camera lens magnification as a magnification factor of fractal set, and counting the number of objects (cells) in each picture as a number of self similar pieces of fractal set.
사람은 독서나 필기 중 중요 문구를 형광펜으로 칠하는 것에서 착안하여, 본 논문에서는 복잡한 배경 질감을 가진 영상에서의 불량유형을 효과적으로 분류하기 위해 불량 픽셀 영역을 하이라이팅 하여 신경망을 훈련하는 방법을 제안한다. 제안 방법의 가능성을 검증하기 위하여 불량유형 구분이 매우 어려운 타이어 밴드 직물의 불량유형 분류에 제안 방법을 적용한다. 또한, 타이어 밴드 직물 영상에 특화된 백라이트 하이라이팅 방법을 제안한다. 백라이트 하이라이트 영상은 GradCAM 기법과 간단한 영상처리를 이용하여 획득할 수 있다. 실험에서 우리는 제안하는 하이라이팅 기법이 분류 정확도뿐만 아니라 훈련속도 면에서 기존 방법보다 우수함을 보였다. 인식률 면에서는 제안 방법이 기존 방법 대비 최대 13.4%의 향상을 달성하였다. 타이어 밴드 직물 영상에 특화된 백라이트 하이라이팅 기법이 윤곽 하이라이팅 기법보다 정확도 측면에서 우수함을 보였다.
본 논문은 GPU를 활용한 이미지 공간 실시간 충돌 검사 기법을 설명한다. 닫힌 물체들이 충돌하지 않는 경우, 뷰잉 레이를 따라 물체의 앞면과 뒷면이 번갈아 가며 나타나는 것을 확인 할 수 있다. 그러나 물체 간 충돌이 일어나는 경우 이 현상이 깨어지게 된다. 이러한 특성에 기반하여 본 논문은 충돌 검사에 필요한 최소한의 표면 정보만 텍스쳐에 기록하여 충돌 검사를 수행하는 기법을 제안한다. 이 기법은 GPU의 framebuffer object 와 vertex buffer object, 그리고 occlusion query 등의 기능을 활용한다. 이러한 GPU의 기능을 이용하면 통상적인 이미지 기반 충돌검사에서 사용하는 multi-pass rendering 과 context switch 부하를 줄일 수 있다. 즉 기존의 이미지 기반 충돌 검사에 비해 적은 렌더링 횟수와 적은 렌더링 부하를 가진다. 본 논문에서 제안된 알고리즘은 변형체나 복잡한 물체에도 적용이 가능하며, 3D 게임이나 가상현실과 같은 실시간 어플리케이션에 적용될 수 있는 성능을 발휘한다.
딥러닝(DL)을 이용한 객체인식, 탐지 및 분할하는 연구는 여러 분야에서 활용되고 있으며, 주로 영상을 DL 모델의 학습 데이터로 사용하고 있지만, 본 논문은 영상뿐 아니라 공간정보 특성을 포함하는 다양한 학습 데이터(multimodal training data)를 향상된 영역기반 합성곱 신경망(R-CNN)인 Detectron2 모델 학습에 사용하여 객체를 분할하고 건물을 탐지하는 것이 목적이다. 이를 위하여 적외선 항공영상과 라이다 데이터의 내재된 객체의 윤곽 및 통계적 질감정보인 Haralick feature와 같은 여러 특성을 추출하였다. DL 모델의 학습 성능은 데이터의 수량과 특성뿐 아니라 융합방법에 의해 좌우된다. 초기융합(early fusion)과 후기융합(late fusion)의 혼용방식인 하이브리드 융합(hybrid fusion)을 적용한 결과 33%의 건물을 추가적으로 탐지 할 수 있다. 이와 같은 실험 결과는 서로 다른 특성 데이터의 복합적 학습과 융합에 의한 상호보완적 효과를 입증하였다고 판단된다.
간경화(liver cirrhosis)는 섬유조직의 증식과 재생성 결절 형성의 형태학적인 변화로 2차적으로 간내혈관의 변형 및 간기능의 저하가 나타나는 질병이며, 정맥류, 복수와 부종, 간성뇌증, 간암 등의 합병증 동반을 미연에 방지하는 것이 간경변증 진단 및 치료에 핵심이다. 일반적으로 간 컴퓨터단층영상이 간경변의 진단 및 병기를 결정하는 방법으로 사용한다. 그러므로 본 연구에서는 간경화의 자동 인식을 위하여 PCA와 TIA 알고리즘을 이용한 특징추출을 통하여 간경변의 자동 검출능력을 알아보고, 각 알고리즘간의 성능을 비교하였다. 실험은 학습영상과 테스트영상으로 구분한다. 고유영상을 생성시키기 위한 학습영상으로 정상영상이 사용되고, 테스트영상으로는 간경화영상이 사용된다. 간 CT 영상에서 간의 질병 부위를 균등하게 ROI 설정하고, $50{\times}50$ 픽셀 크기로 영상을 저장하여 실험하였다. 실험결과로 PCA는 간경화 검출율이 35%로 질병 인식으로 부적합하며, TIA 알고리즘의 AGL, TM, MU, EN는 100% 질병 인식력을 나타내어 간경화 자동 진단 인식으로 가능했다. 또한 결과를 임상에 적용하여 간경변의 컴퓨터보조진단으로 활용한다면 영상의학과 의사에게 업무 부담을 줄이고, 일차적 간경변의 스크리닝 도구로서 활용이 가능할 것이다. 그리고 TIA 알고리즘을 활용한 자동진단은 질병 진단의 전단계로서 예비판독의 정보를 제공하며 간경변의 조기 진단 및 예방이 가능다고 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.