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GPU를 이용한 이미지 공간 충돌 검사 기법
GPU-based Image-space Collision Detection among Closed Objects

장한용, Han-Young Jang*, 정택상, TaekSang Jeong**, 한정현, JungHyun Han***

요약 본 논문은 GPU를 활용한 이미지 공간 실시간 충돌 검사 기법을 설명한다. 닫힌 물체들이 충돌하지 않는 경우, 
뷰잉 레이를 따라 물체의 앞면과 뒷면이 번갈아 가며 나타나는 것을 확인 할 수 있다. 그러나 물체 간 충돌이 일어
나는 경우 이 현상이 깨어지게 된다. 이러한 특성에 기반하여 본 논문은 충돌 검사에 필요한 최소한의 표면 정보만 
텍스쳐에 기록하여 충돌 검사를 수행하는 기법을 제안한다. 이 기법은 GPU의 framebuffer object 와 vertex buffer 
object, 그리고 occlusion query 등의 기능을 활용한다. 이러한 GPU의 기능을 이용하면 통상적인 이미지 기반 충돌 
검사에서 사용하는 multi-pass rendering 과 context switch 부하를 줄일 수 있다. 즉 기존의 이미지 기반 충돌 검
사에 비해 적은 렌더링 횟수와 적은 렌더링 부하를 가진다. 본 논문에서 제안된 알고리즘은 변형체나 복잡한 물체에
도 적용이 가능하며,  3D 게임이나 가상현실과 같은 실시간 어플리케이션에 적용될 수 있는 성능을 발휘한다.
Abstract  This paper presents an image-space algorithm to real-time collision detection, which 
is run completely by GPU. For a single object or for multiple objects with no collision, the 
front and back faces appear alternately along the view direction. However, such alternation is 
violated when objects collide. Based on these observations, the algorithm propose the depth 
peeling method which renders the minimal surface of objects, not whole surface, to find 
colliding. The Depth peeling method utilizes the state-of-the-art functionalities of GPU such 
as framebuffer object, vertexbuffer object, and occlusion query. Combining these functions, 
multi-pass rendering and context switch can be done with low overhead. Therefore proposed 
approach has less rendering times and rendering overhead than previous image-space collision 
detection. The algorithm can handle deformable objects and complex objects, and its precision 
is governed by the resolution of the render-target-texture. The experimental results show the 
feasibility of GPU-based collision detection and its performance gain in real-time applications 
such as 3D games. 
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1. Introduction
Collision detection is a fundamental problem in many 

applications such as computer graphics and animation, 
3D games, virtual reality, physically-based simulation, 
and robotics. It is often the major computational 
bottleneck in real-time simulation of complex and 
dynamic systems. A lot of algorithms for collision 
detection have been proposed, and the algorithms 
based on triangulated models can be classified into 
two broad categories. One is object-space approach 
and the other is image-space approach.  

This paper proposes a new technique for image-space 
approach. The proposed algorithm is quite simple, is 
easy to implement using shaders, and shows superior 
performance. The simplicity and efficiency of the 
algorithm are attractive for real-time applications such 
as 3D games.

The structure of this paper is as follows. Section 2 
reviews the related work, and discusses the advantages 
and disadvantages of the traditional image-based 
approach. Section 3 describes the features of collision 
among closed objects. Based on the features, Section 4 
presents the collision detection algorithm, which 
overcomes the disadvantages of the traditional 
approach. Section 5 discusses the strength and 
weakness of the proposed algorithm. Section 6 shows 
the test results, and Section 7 concludes the paper.

2. Related Work
In the object-space approach, most of the proposed 

algorithms are accelerated by utilizing spatial data 
structures which are often hierarchically organized and 
are based on bounding volumes such as bounding 
spheres [1,2], axis-aligned bounding boxes [3,4], 
oriented bounding boxes [5], discrete orientation 
polytopes [6], and quantized orientation slabs with 
primary orientations [7]. These data structures are 
used to cull away portions of an object that are not in 
close proximity. However, the spatial data structures 
do not help a lot in identifying the closest features 
between pairs of objects in close proximity, especially 
for dynamic environments and deformable objects, 
where both of the hierarchy and bounding volumes 
should be updated. Some algorithms proposed for 

handling deformable objects either can handle simple 
objects only or have been designed for a limited class 
of objects such as cloth.[8,9] 

In contrast with the object-space approach, the 
image-space approach typically measures the 
volumetric ranges of objects along the viewing 
direction, and then compares the ranges to detect 
collision. The trend started with the work of Shinya 
and Forgue [10], where the depth layers of convex 
objects are rendered into depth buffers, and then 
compared for interference checking. Since then, 
various algorithms for image-space approach have 
been proposed, and have attempted to maximally 
utilize the graphics hardware's functionality 
[11,12,13,14].

The most recent efforts in the image-space 
approach include the work by Heidelberger et al. 
[15,16], which is useful to discuss both of the 
advantages and disadvantages of the image-space 
approach. In their work, layered depth images (LDIs) 
are computed, one for each object, where an LDI 
stores entry and leaving points of parallel viewing 
rays with respect to an object. Then, collision is 
detected through Boolean intersection on LDIs. This 
approach can handle concave objects, and shows 
real-time performance for simple objects. However, 
LDI generation requires a considerable amount of time 
for objects with complex geometry.

In general, the advantages of the image-space 
approach can be listed as follows. Unlike the 
object-space approach which requires non-trivial 
pre-processing for computing bounding volumes and 
their hierarchy, the image-space approach does rarely 
require pre-processing. Partly due to absence of the 
pre-processing, the image-space approach is easy to 
implement. It can also effectively handle deformable 
objects and dynamic environments. Moreover, it 
usually employs graphics hardware or GPU which has 
been evolving at a rate faster than Moore's law, while 
the object-space approach performs virtually all 
collision tests on CPU.

The image-space approach also reveals 
disadvantages. First of all, virtually all of the 
image-space algorithms proposed so far perform 
collision tests using both CPU and GPU, and suffer 
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from the limited bandwidth between them, i.e. the 
readback problem. In the LDI-based algorithm by 
Heidelberger et al. [15,16], for example, the CPU reads 
the LDIs from the GPU's back buffers, and then tests 
the LDIs for Boolean intersection. Due to the limited 
bandwidth, the sampling resolution (LDI resolution) is 
usually made low, 32x32 through 128x128. Note that, 
however, the accuracy of the collision detection is 
governed by the LDI precision, and low resolutions do 
not guarantee accurate detection of collision for 
complex objects. As an effort to overcome the 
readback problem, Govindaraju et al. [17] proposed an 
algorithm named CULLIDE, which computes a 
potentially colliding set (PCS) through hardware 
visibility query. However, it requires off-line 
pre-processing or setup stage, which is quite complex. 
Recently, an efficient pre-processing technique for the 
CULLIDE algorithm, named chromatic decomposition 
[18], has been suggested, but it also has limitations. 
For example, the objects to be tested for collision are 
limited to polygonal meshes with fixed connectivity. 
For a deformable mesh the topology of which may 
vary frame by frame, the time-consuming 
pre-processing has to be executed per each frame.

Another major disadvantage of the image-based 
approach lies in the rendering cost because it 
generally renders the entire surface areas of the 
objects to be tested for collision. The computational 
bottleneck may lie in GPU for arbitrarily-shaped 
complex objects.

Finally, the input to most of the image-space 
algorithms is limited to a pair of objects, not many 
objects in a large scene. Knott and Pai [19] proposed 
an algorithm that can handle large number of objects. 
However, their algorithm is based on wireframe 
rendering, and therefore is inherently fragile, i.e. may 
often miss obvious collision.

In order to resolve the problems of the traditional 
image-space approach, this paper proposes a 
GPU-based algorithm, where the entire collision test 
is run by GPU and readback is minimized. Assuming 
no self-collision, the rendering cost has been 
dramatically reduced. Further, it detects collision of 
the entire scene, not of only a pair of objects.

3. Features of Collision among Closed Objects

Figure 1. Front-back face pairing in a closed object

Figure 2. Front-back face pairing in multiple objects: (a)consistent pairs (b) inconsistent pair (c) inconsistent pairs

The image-space collision detection algorithm 
proposed in this paper handles only closed objects. 
Collision between closed objects reveals distinct 
features, which have been observed in many 
image-based algorithms. The front and back faces of 
a closed mesh appear alternately along a viewing ray, 
as illustrated in Fig. 1. The observation can be 
generalized for a scene of multiple objects with no 
collision, as illustrated in Fig. 2-(a). More precisely, 
a front face of an object is paired with a back face of 
the same object. In Fig. 2-(a), we can find two such 
pairs, (f1,b1) of object1 and (f2,b2) of object2. We call 
them consistent pairs.

Collision takes place when an object penetrates or 
touches another object. In Fig. 2-(b), object1 
penetrates object2, and then consistent pairing is 
violated, i.e. right in front of b1 lies f2, not f1. We 
call (f2,b1) an inconsistent pair. Such observation holds 
for multiple object collision, as illustrated in Fig. 
2-(c), where we can find two inconsistent pairs, (f2,b1) 
and (f3,b2). Then, collision detection resorts to the 
task of finding inconsistent pairs (fi,bj), i≠j, which 
tells us that objecti collides with objectj.
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4. Image-space Collision Detection
Each object in the scene is associated with an 

axis-aligned bounding box (AABB). The potentially 
colliding set (PCS) is computed using the AABBs. The 
AABBs of the PCS determine the dimension of the 
orthographic view volume, within which the 
image-space collision detection is invoked. The 
proposed algorithm can be described as virtual ray 
casting in the sense that collision is detected for a set 
of parallel rays.

4.1 Front-face Rendering through Depth Peeling 
Iteration

Figure 3. Depth peeling iteration: (a) initialization (b) 1st iteration (c) 2nd iteration (d) 3rd iteration

All of the front faces in the PCS are rendered onto 
textures through so-called depth peeling iteration, 
where the front faces are peeled off layer by layer. 
Fig. 3 illustrates an example with four texture maps, 
numbered #1, #2, #3, and #4. At the initialization 
stage, texture #1 is filled with the depth value of the 
scene background. Then, all objects in the scene are 
rendered with the depth test enabled. As a result, 
texture #1 contains the depth values of the first-layer 
front faces, as illustrated in Fig. 3-(a). Rendering is 
done by a shader, and each texel of the texture 
contains one more piece of information: the object ID 
of the rendered pixel.

The iteration starts by initializing texture #2 with 
the depth value of the scene background. A new 
shader is used for the iteration, which is different 
from the one used for the initialization stage. The 

shader takes the rendering result of the previous 
stage (texture #1) as a texture, and discards a pixel if 
it is not deeper than the one in the texture or its 
object ID is identical to that of the corresponding 
texel. Then, only the second-layer of the front faces 
survives, and their depth values are stored into the 
new texture (texture #2), as shown in Fig. 3-(b).

At the end of iteration, occlusion query [20] is 
invoked, which returns the number of pixels that have 
passed the depth test. If the return value is 0, it 
means that no object is rendered by the shader, and 
the iteration stops. Otherwise, the iteration resumes. 
In Fig. 3-(b), the second-layer front faces of the 
scene have been rendered. Therefore, occlusion query 
returns non-0 value, and the 2nd iteration starts.

During the 2nd iteration, a new texture (texture #3) 
is initialized with the background depth, and updated 
using the texture from the previous stage (texture #2). 
The result is shown in Fig. 3-(c). Occlusion query is 
invoked and returns non-0 value. The 3rd iteration 
starts with a new texture (texture #4) initialized with 
the background depth. However, nothing is rendered, 
and occlusion query returns 0. Therefore, the depth 
peeling iteration stops. Note that texture #4 is not 
updated at all, and all of its texels contain the 
background depth. Fig. 3-(d) shows the result of the 
depth peeling process. The depth peeling iteration is 
implemented using framebuffer object (FBO) [21], 
which has recently been specified as a collection of 
local buffers such as color, depth, stencil, and 
accumulation buffers. In this new specification, 
rendering destinations can be off-screen renderbuffers 
or textures. They can be shared among FBOs. 
Therefore, the texture rendered in an iteration will be 
available for the next iteration, at the minimum cost 
of context switching.

4.2 Collision Detection through Pixel-by-texel 
Comparison

Either the front faces or the back faces of a scene 
can be rendered by changing the culling mode. When 
all the front faces are rendered into textures, the 
culling mode is changed, and collision test starts by 
rendering all the back faces at a time.

A pixel from a back face can be rendered only when 
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it is in the range delimited by the first and last 
textures produced in the depth peeling process. They 
are texture #1 and texture #4 in the example. In Fig. 
3-(d), all the back faces are in the range. Section 5 
will discuss why such condition is needed.

Figure 4. Collision detection using inconsistent pairs: (a)(t3,p) (b) (t2,p) and (t3,p) (c) collision area
When a pixel p from a back face is rendered, the 

texture maps of the front faces lying in front of p are 
traversed in the back-to-front order. In Fig. 4-(a), 
three texels t1, t2 and t3 (from texture #1, texture #2, 
and texture #3, respectively) are found to lie in front 
of p. The back-to-front traverse starts from t3. By 
retrieving the object ID recorded in the texture, we 
can find that t3 belongs to object2. Note that p 
belongs to object3. They are different objects, and 
therefore (t3,p) is taken as an inconsistent pair, which 
judges that object2 and object3 collide. The 
back-to-front traverse continues and finds that t2 and 
p are from an identical object, i.e. (t2,p) is a 
consistent pair. Once such a consistent pair is found, 
the traverse stops. In the example, the texel t1 is not 
visited.  Along the viewing ray in Fig. 4-(a), collision 
between object2 and object3 is detected.

Fig. 4-(b) shows collision test with another 
back-face pixel. Two inconsistent pairs, (t2,p) and 
(t3,p), are found, which imply that object3 collides 
with both of object1 and object2. A set of 
colliding-object pairs is associated with a viewing ray. 
For example, {(object1,object3),(object2,object3)} is 
associated with the ray in Fig. 4-(b). Of course, a set 

will be empty if no collision is detected. The shaded 
area in Fig. 4-(c) encompasses all viewing rays along 
which collision has been detected. The colliding-object 
pair sets for the shaded area are compressed and 
rendered into a render target, which is then readback 
by CPU. Our algorithm requires only a single readback 
for the PCS area in the screen.

5 Discussions

Figure 5. Collision example: (a) objects (b) depthpeeling results (c) inconsistent pair (d) collision area

As discussed in Section 2, the traditional 
image-based approach suffers from three major 
drawbacks. The algorithm proposed in this paper 
resolves them successfully. First of all, in the current 
implementation, CPU computes only the potentially 
colliding set (PCS), and the entire collision test is run 
by GPU. The authors believe that such an approach is 
the first of its kind in collision detection research 
field. As discussed in Section 4.2, CPU simply reads 
the collision test results (in the form of 
colliding-object pair sets) for the PCS, and such 
readback is done only once for a PCS. The algorithm 
does rarely suffer from the readback problem. For 
example, the algorithm presented in this paper 
requires less readback than the CULLIDE algorithm 
[17,18].

An important thing to note is that, unlike the LDI 
approach [15,16], the texture resolution governing the 
accuracy of collision detection can be made identical 
to the PCS size in the screen. Then, the precision of 
the collision detection becomes compatible with the 
user's visual perception. This makes the proposed 
algorithm distinguished from other real-time 
image-space collision detection algorithms.

The second drawback of the traditional approach 



50

has also been resolved: the proposed image-space 
algorithm does not necessarily render the entire 
surface of an object. For an arbitrarily-shaped 
complex object, it significantly increases efficiency. 
Fig. 5 illustrates the collision detection algorithm with 
two objects. In Fig. 5, only four textures are used for 
depth peeling, and inconsistent pairs are found. In 
contrast, for example, the LDI approach computes nine 
pairs of entry and leaving points (volumetric ranges) 
by rendering the entire surface, for the cases of Fig. 
5.

Third, the proposed algorithm can detect collision of 
the entire scene, not of only a pair of objects. The 
performance gain obtained by processing the entire 
scene at a time is especially useful for real-time 
applications such as 3D games.

6. Implementation 
The proposed algorithm has been implemented in 

C++, OpenGL and Cg on a PC with 3.6 GHz Intel 
Pentium4 CPU, 2GB memory, and ATI Radeon X800XT 
GPU. Various functionalities of the graphics hardware 
are exploited, e.g. the asynchronous 
GL_NV_occlusion_query for depth peeling and collision 
detection, GL_ARB_vertex_buffer_object for vertex 
buffer, EXT_framebuffer_object for off-screen 
rendering, etc. Four 32-bit floating-point textures are 
used for depth peeling.

Figure 6. Test objects

Figure 7. Performance evaluation for collision between two objects
The proposed algorithm has been tested with 

various objects, and shown in Fig. 6 are complex 
models among them. Fig. 7 lists the measured 
execution time for collision detection between pairs of 
the complex models. In each sub-figure, the right one 
shows heavy intersection while the left one shows 
light intersection. When heavily intersected, more time 
is need for collision detection. In the case of light 
intersection, objects are rendered four times on 
average. In the case of heavy intersection, objects are 
rendered six times on average.
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Figure 8. Performance evaluation with different texture resolutions
Fig. 7-(a) through 7-(d) are listed in the 

decreasing order of mesh complexity, e.g. 1423K 
triangles in Fig. 7-(a) and 214K triangles in Fig. 
7-(d). In Fig. Fig. 8, the upper-right vertex of each 
curve corresponds to Fig. 7-(a) while the lower-left 
vertex corresponds to Fig. 7-(d), i.e. execution time is 
proportional to the mesh complexity. Collision 
detection performances are also evaluated by changing 
the texture resolution. Three curves in Fig. 8 show 
that the texture resolution does not have a great 
impact on the performance. Recall that the accuracy of 
the collision detection is governed by the 
texture/image precision. Therefore, in the proposed 
approach, highly accurate collision test can be 
achieved in real-time even with 1024×1024 texture.

Figure 9. Multiple objects in a cube

No.
objects

collision detection
time per frame

No. collisions
per min.

fps

 50  3.5 ms  408  193

 40  2.3 ms  328  230

 30  1.3 ms  142  345

Table 1. Performance evaluation for collision among multiple objects

Fig. 9 shows a cube in which multiple objects are 
moving and colliding with each other. Each model 
consists of thousands of triangles, and an object has 
3K polygons on average. Table 1 shows the 
performance evaluation measured by varying the 
number of objects. Unlike the collision test of Fig. 7, 
PCS is computed by CPU using bounding spheres, and 
the GPU collision detection algorithm is invoked per a 
PCS.

7. Conclusion
This paper presented an efficient image-space 

algorithm to real-time collision detection. In the 
current implementation, CPU computes only the 
potentially colliding set (PCS), and the entire collision 
test is run by GPU. The algorithm does rarely suffer 
from the readback problem. Further, the proposed 
algorithm does not necessarily render the entire 
surface of an object, and therefore the rendering cost 
has been reduced. The algorithm's efficiency is 
achieved by detecting collision of the entire scene, not 
of only a pair of objects. The algorithm maximally 
utilizes the state-of-the-art functionalities of GPU 
such as framebuffer objects and occlusion query. The 
experimental results show the feasibility of GPU-based 
collision detection and its performance gain in 
real-time applications such as 3D games.
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