
45

GPU를 이용한 이미지 공간 충돌 검사 기법
GPU-based Image-space Collision Detection among Closed Objects

장한용, Han-Young Jang*, 정택상, TaekSang Jeong**, 한정현, JungHyun Han***

요약 본 논문은 GPU를 활용한 이미지 공간 실시간 충돌 검사 기법을 설명한다. 닫힌 물체들이 충돌하지 않는 경우,
뷰잉 레이를 따라 물체의 앞면과 뒷면이 번갈아 가며 나타나는 것을 확인 할 수 있다. 그러나 물체 간 충돌이 일어
나는 경우 이 현상이 깨어지게 된다. 이러한 특성에 기반하여 본 논문은 충돌 검사에 필요한 최소한의 표면 정보만
텍스쳐에 기록하여 충돌 검사를 수행하는 기법을 제안한다. 이 기법은 GPU의 framebuffer object 와 vertex buffer
object, 그리고 occlusion query 등의 기능을 활용한다. 이러한 GPU의 기능을 이용하면 통상적인 이미지 기반 충돌
검사에서 사용하는 multi-pass rendering 과 context switch 부하를 줄일 수 있다. 즉 기존의 이미지 기반 충돌 검
사에 비해 적은 렌더링 횟수와 적은 렌더링 부하를 가진다. 본 논문에서 제안된 알고리즘은 변형체나 복잡한 물체에
도 적용이 가능하며, 3D 게임이나 가상현실과 같은 실시간 어플리케이션에 적용될 수 있는 성능을 발휘한다.
Abstract This paper presents an image-space algorithm to real-time collision detection, which
is run completely by GPU. For a single object or for multiple objects with no collision, the
front and back faces appear alternately along the view direction. However, such alternation is
violated when objects collide. Based on these observations, the algorithm propose the depth
peeling method which renders the minimal surface of objects, not whole surface, to find
colliding. The Depth peeling method utilizes the state-of-the-art functionalities of GPU such
as framebuffer object, vertexbuffer object, and occlusion query. Combining these functions,
multi-pass rendering and context switch can be done with low overhead. Therefore proposed
approach has less rendering times and rendering overhead than previous image-space collision
detection. The algorithm can handle deformable objects and complex objects, and its precision
is governed by the resolution of the render-target-texture. The experimental results show the
feasibility of GPU-based collision detection and its performance gain in real-time applications
such as 3D games.
핵심어: GPU, Image-space collision detection, Occlusion query

본 연구는 대학 IT연구센터 지원사업 (IITA-2005-(C1090-0501-0019)) 및 2005년 GRC 연구결과로 수행되었음.
*주저자 : 고려대학교 컴퓨터학과 대학원생
**공동저자 : 고려대학교 컴퓨터학과 대학원생
***교신저자 : 고려대학교 컴퓨터학과 교수; e-mail: jhan@korea.ac.kr

46

1. Introduction
Collision detection is a fundamental problem in many

applications such as computer graphics and animation,
3D games, virtual reality, physically-based simulation,
and robotics. It is often the major computational
bottleneck in real-time simulation of complex and
dynamic systems. A lot of algorithms for collision
detection have been proposed, and the algorithms
based on triangulated models can be classified into
two broad categories. One is object-space approach
and the other is image-space approach.

This paper proposes a new technique for image-space
approach. The proposed algorithm is quite simple, is
easy to implement using shaders, and shows superior
performance. The simplicity and efficiency of the
algorithm are attractive for real-time applications such
as 3D games.

The structure of this paper is as follows. Section 2
reviews the related work, and discusses the advantages
and disadvantages of the traditional image-based
approach. Section 3 describes the features of collision
among closed objects. Based on the features, Section 4
presents the collision detection algorithm, which
overcomes the disadvantages of the traditional
approach. Section 5 discusses the strength and
weakness of the proposed algorithm. Section 6 shows
the test results, and Section 7 concludes the paper.

2. Related Work
In the object-space approach, most of the proposed

algorithms are accelerated by utilizing spatial data
structures which are often hierarchically organized and
are based on bounding volumes such as bounding
spheres [1,2], axis-aligned bounding boxes [3,4],
oriented bounding boxes [5], discrete orientation
polytopes [6], and quantized orientation slabs with
primary orientations [7]. These data structures are
used to cull away portions of an object that are not in
close proximity. However, the spatial data structures
do not help a lot in identifying the closest features
between pairs of objects in close proximity, especially
for dynamic environments and deformable objects,
where both of the hierarchy and bounding volumes
should be updated. Some algorithms proposed for

handling deformable objects either can handle simple
objects only or have been designed for a limited class
of objects such as cloth.[8,9]

In contrast with the object-space approach, the
image-space approach typically measures the
volumetric ranges of objects along the viewing
direction, and then compares the ranges to detect
collision. The trend started with the work of Shinya
and Forgue [10], where the depth layers of convex
objects are rendered into depth buffers, and then
compared for interference checking. Since then,
various algorithms for image-space approach have
been proposed, and have attempted to maximally
utilize the graphics hardware's functionality
[11,12,13,14].

The most recent efforts in the image-space
approach include the work by Heidelberger et al.
[15,16], which is useful to discuss both of the
advantages and disadvantages of the image-space
approach. In their work, layered depth images (LDIs)
are computed, one for each object, where an LDI
stores entry and leaving points of parallel viewing
rays with respect to an object. Then, collision is
detected through Boolean intersection on LDIs. This
approach can handle concave objects, and shows
real-time performance for simple objects. However,
LDI generation requires a considerable amount of time
for objects with complex geometry.

In general, the advantages of the image-space
approach can be listed as follows. Unlike the
object-space approach which requires non-trivial
pre-processing for computing bounding volumes and
their hierarchy, the image-space approach does rarely
require pre-processing. Partly due to absence of the
pre-processing, the image-space approach is easy to
implement. It can also effectively handle deformable
objects and dynamic environments. Moreover, it
usually employs graphics hardware or GPU which has
been evolving at a rate faster than Moore's law, while
the object-space approach performs virtually all
collision tests on CPU.

The image-space approach also reveals
disadvantages. First of all, virtually all of the
image-space algorithms proposed so far perform
collision tests using both CPU and GPU, and suffer

47

from the limited bandwidth between them, i.e. the
readback problem. In the LDI-based algorithm by
Heidelberger et al. [15,16], for example, the CPU reads
the LDIs from the GPU's back buffers, and then tests
the LDIs for Boolean intersection. Due to the limited
bandwidth, the sampling resolution (LDI resolution) is
usually made low, 32x32 through 128x128. Note that,
however, the accuracy of the collision detection is
governed by the LDI precision, and low resolutions do
not guarantee accurate detection of collision for
complex objects. As an effort to overcome the
readback problem, Govindaraju et al. [17] proposed an
algorithm named CULLIDE, which computes a
potentially colliding set (PCS) through hardware
visibility query. However, it requires off-line
pre-processing or setup stage, which is quite complex.
Recently, an efficient pre-processing technique for the
CULLIDE algorithm, named chromatic decomposition
[18], has been suggested, but it also has limitations.
For example, the objects to be tested for collision are
limited to polygonal meshes with fixed connectivity.
For a deformable mesh the topology of which may
vary frame by frame, the time-consuming
pre-processing has to be executed per each frame.

Another major disadvantage of the image-based
approach lies in the rendering cost because it
generally renders the entire surface areas of the
objects to be tested for collision. The computational
bottleneck may lie in GPU for arbitrarily-shaped
complex objects.

Finally, the input to most of the image-space
algorithms is limited to a pair of objects, not many
objects in a large scene. Knott and Pai [19] proposed
an algorithm that can handle large number of objects.
However, their algorithm is based on wireframe
rendering, and therefore is inherently fragile, i.e. may
often miss obvious collision.

In order to resolve the problems of the traditional
image-space approach, this paper proposes a
GPU-based algorithm, where the entire collision test
is run by GPU and readback is minimized. Assuming
no self-collision, the rendering cost has been
dramatically reduced. Further, it detects collision of
the entire scene, not of only a pair of objects.

3. Features of Collision among Closed Objects

Figure 1. Front-back face pairing in a closed object

Figure 2. Front-back face pairing in multiple objects: (a)consistent pairs (b) inconsistent pair (c) inconsistent pairs

The image-space collision detection algorithm
proposed in this paper handles only closed objects.
Collision between closed objects reveals distinct
features, which have been observed in many
image-based algorithms. The front and back faces of
a closed mesh appear alternately along a viewing ray,
as illustrated in Fig. 1. The observation can be
generalized for a scene of multiple objects with no
collision, as illustrated in Fig. 2-(a). More precisely,
a front face of an object is paired with a back face of
the same object. In Fig. 2-(a), we can find two such
pairs, (f1,b1) of object1 and (f2,b2) of object2. We call
them consistent pairs.

Collision takes place when an object penetrates or
touches another object. In Fig. 2-(b), object1
penetrates object2, and then consistent pairing is
violated, i.e. right in front of b1 lies f2, not f1. We
call (f2,b1) an inconsistent pair. Such observation holds
for multiple object collision, as illustrated in Fig.
2-(c), where we can find two inconsistent pairs, (f2,b1)
and (f3,b2). Then, collision detection resorts to the
task of finding inconsistent pairs (fi,bj), i≠j, which
tells us that objecti collides with objectj.

48

4. Image-space Collision Detection
Each object in the scene is associated with an

axis-aligned bounding box (AABB). The potentially
colliding set (PCS) is computed using the AABBs. The
AABBs of the PCS determine the dimension of the
orthographic view volume, within which the
image-space collision detection is invoked. The
proposed algorithm can be described as virtual ray
casting in the sense that collision is detected for a set
of parallel rays.

4.1 Front-face Rendering through Depth Peeling
Iteration

Figure 3. Depth peeling iteration: (a) initialization (b) 1st iteration (c) 2nd iteration (d) 3rd iteration

All of the front faces in the PCS are rendered onto
textures through so-called depth peeling iteration,
where the front faces are peeled off layer by layer.
Fig. 3 illustrates an example with four texture maps,
numbered #1, #2, #3, and #4. At the initialization
stage, texture #1 is filled with the depth value of the
scene background. Then, all objects in the scene are
rendered with the depth test enabled. As a result,
texture #1 contains the depth values of the first-layer
front faces, as illustrated in Fig. 3-(a). Rendering is
done by a shader, and each texel of the texture
contains one more piece of information: the object ID
of the rendered pixel.

The iteration starts by initializing texture #2 with
the depth value of the scene background. A new
shader is used for the iteration, which is different
from the one used for the initialization stage. The

shader takes the rendering result of the previous
stage (texture #1) as a texture, and discards a pixel if
it is not deeper than the one in the texture or its
object ID is identical to that of the corresponding
texel. Then, only the second-layer of the front faces
survives, and their depth values are stored into the
new texture (texture #2), as shown in Fig. 3-(b).

At the end of iteration, occlusion query [20] is
invoked, which returns the number of pixels that have
passed the depth test. If the return value is 0, it
means that no object is rendered by the shader, and
the iteration stops. Otherwise, the iteration resumes.
In Fig. 3-(b), the second-layer front faces of the
scene have been rendered. Therefore, occlusion query
returns non-0 value, and the 2nd iteration starts.

During the 2nd iteration, a new texture (texture #3)
is initialized with the background depth, and updated
using the texture from the previous stage (texture #2).
The result is shown in Fig. 3-(c). Occlusion query is
invoked and returns non-0 value. The 3rd iteration
starts with a new texture (texture #4) initialized with
the background depth. However, nothing is rendered,
and occlusion query returns 0. Therefore, the depth
peeling iteration stops. Note that texture #4 is not
updated at all, and all of its texels contain the
background depth. Fig. 3-(d) shows the result of the
depth peeling process. The depth peeling iteration is
implemented using framebuffer object (FBO) [21],
which has recently been specified as a collection of
local buffers such as color, depth, stencil, and
accumulation buffers. In this new specification,
rendering destinations can be off-screen renderbuffers
or textures. They can be shared among FBOs.
Therefore, the texture rendered in an iteration will be
available for the next iteration, at the minimum cost
of context switching.

4.2 Collision Detection through Pixel-by-texel
Comparison

Either the front faces or the back faces of a scene
can be rendered by changing the culling mode. When
all the front faces are rendered into textures, the
culling mode is changed, and collision test starts by
rendering all the back faces at a time.

A pixel from a back face can be rendered only when

49

it is in the range delimited by the first and last
textures produced in the depth peeling process. They
are texture #1 and texture #4 in the example. In Fig.
3-(d), all the back faces are in the range. Section 5
will discuss why such condition is needed.

Figure 4. Collision detection using inconsistent pairs: (a)(t3,p) (b) (t2,p) and (t3,p) (c) collision area
When a pixel p from a back face is rendered, the

texture maps of the front faces lying in front of p are
traversed in the back-to-front order. In Fig. 4-(a),
three texels t1, t2 and t3 (from texture #1, texture #2,
and texture #3, respectively) are found to lie in front
of p. The back-to-front traverse starts from t3. By
retrieving the object ID recorded in the texture, we
can find that t3 belongs to object2. Note that p
belongs to object3. They are different objects, and
therefore (t3,p) is taken as an inconsistent pair, which
judges that object2 and object3 collide. The
back-to-front traverse continues and finds that t2 and
p are from an identical object, i.e. (t2,p) is a
consistent pair. Once such a consistent pair is found,
the traverse stops. In the example, the texel t1 is not
visited. Along the viewing ray in Fig. 4-(a), collision
between object2 and object3 is detected.

Fig. 4-(b) shows collision test with another
back-face pixel. Two inconsistent pairs, (t2,p) and
(t3,p), are found, which imply that object3 collides
with both of object1 and object2. A set of
colliding-object pairs is associated with a viewing ray.
For example, {(object1,object3),(object2,object3)} is
associated with the ray in Fig. 4-(b). Of course, a set

will be empty if no collision is detected. The shaded
area in Fig. 4-(c) encompasses all viewing rays along
which collision has been detected. The colliding-object
pair sets for the shaded area are compressed and
rendered into a render target, which is then readback
by CPU. Our algorithm requires only a single readback
for the PCS area in the screen.

5 Discussions

Figure 5. Collision example: (a) objects (b) depthpeeling results (c) inconsistent pair (d) collision area

As discussed in Section 2, the traditional
image-based approach suffers from three major
drawbacks. The algorithm proposed in this paper
resolves them successfully. First of all, in the current
implementation, CPU computes only the potentially
colliding set (PCS), and the entire collision test is run
by GPU. The authors believe that such an approach is
the first of its kind in collision detection research
field. As discussed in Section 4.2, CPU simply reads
the collision test results (in the form of
colliding-object pair sets) for the PCS, and such
readback is done only once for a PCS. The algorithm
does rarely suffer from the readback problem. For
example, the algorithm presented in this paper
requires less readback than the CULLIDE algorithm
[17,18].

An important thing to note is that, unlike the LDI
approach [15,16], the texture resolution governing the
accuracy of collision detection can be made identical
to the PCS size in the screen. Then, the precision of
the collision detection becomes compatible with the
user's visual perception. This makes the proposed
algorithm distinguished from other real-time
image-space collision detection algorithms.

The second drawback of the traditional approach

50

has also been resolved: the proposed image-space
algorithm does not necessarily render the entire
surface of an object. For an arbitrarily-shaped
complex object, it significantly increases efficiency.
Fig. 5 illustrates the collision detection algorithm with
two objects. In Fig. 5, only four textures are used for
depth peeling, and inconsistent pairs are found. In
contrast, for example, the LDI approach computes nine
pairs of entry and leaving points (volumetric ranges)
by rendering the entire surface, for the cases of Fig.
5.

Third, the proposed algorithm can detect collision of
the entire scene, not of only a pair of objects. The
performance gain obtained by processing the entire
scene at a time is especially useful for real-time
applications such as 3D games.

6. Implementation
The proposed algorithm has been implemented in

C++, OpenGL and Cg on a PC with 3.6 GHz Intel
Pentium4 CPU, 2GB memory, and ATI Radeon X800XT
GPU. Various functionalities of the graphics hardware
are exploited, e.g. the asynchronous
GL_NV_occlusion_query for depth peeling and collision
detection, GL_ARB_vertex_buffer_object for vertex
buffer, EXT_framebuffer_object for off-screen
rendering, etc. Four 32-bit floating-point textures are
used for depth peeling.

Figure 6. Test objects

Figure 7. Performance evaluation for collision between two objects
The proposed algorithm has been tested with

various objects, and shown in Fig. 6 are complex
models among them. Fig. 7 lists the measured
execution time for collision detection between pairs of
the complex models. In each sub-figure, the right one
shows heavy intersection while the left one shows
light intersection. When heavily intersected, more time
is need for collision detection. In the case of light
intersection, objects are rendered four times on
average. In the case of heavy intersection, objects are
rendered six times on average.

51

Figure 8. Performance evaluation with different texture resolutions
Fig. 7-(a) through 7-(d) are listed in the

decreasing order of mesh complexity, e.g. 1423K
triangles in Fig. 7-(a) and 214K triangles in Fig.
7-(d). In Fig. Fig. 8, the upper-right vertex of each
curve corresponds to Fig. 7-(a) while the lower-left
vertex corresponds to Fig. 7-(d), i.e. execution time is
proportional to the mesh complexity. Collision
detection performances are also evaluated by changing
the texture resolution. Three curves in Fig. 8 show
that the texture resolution does not have a great
impact on the performance. Recall that the accuracy of
the collision detection is governed by the
texture/image precision. Therefore, in the proposed
approach, highly accurate collision test can be
achieved in real-time even with 1024×1024 texture.

Figure 9. Multiple objects in a cube

No.
objects

collision detection
time per frame

No. collisions
per min.

fps

 50 3.5 ms 408 193

 40 2.3 ms 328 230

 30 1.3 ms 142 345

Table 1. Performance evaluation for collision among multiple objects

Fig. 9 shows a cube in which multiple objects are
moving and colliding with each other. Each model
consists of thousands of triangles, and an object has
3K polygons on average. Table 1 shows the
performance evaluation measured by varying the
number of objects. Unlike the collision test of Fig. 7,
PCS is computed by CPU using bounding spheres, and
the GPU collision detection algorithm is invoked per a
PCS.

7. Conclusion
This paper presented an efficient image-space

algorithm to real-time collision detection. In the
current implementation, CPU computes only the
potentially colliding set (PCS), and the entire collision
test is run by GPU. The algorithm does rarely suffer
from the readback problem. Further, the proposed
algorithm does not necessarily render the entire
surface of an object, and therefore the rendering cost
has been reduced. The algorithm's efficiency is
achieved by detecting collision of the entire scene, not
of only a pair of objects. The algorithm maximally
utilizes the state-of-the-art functionalities of GPU
such as framebuffer objects and occlusion query. The
experimental results show the feasibility of GPU-based
collision detection and its performance gain in
real-time applications such as 3D games.

참고문헌
[1] P. M. Hubbard. "Interactive collision detection." In

Proc. of IEEE Symposium on Research Frontiers in
Virtual Reality, pages 24-32, 1993.

[2] I. Palmer and R. Grimsdale. "Collision detection for
animation using sphere-trees." Computer
GraphicsForum, 14(2):105-116, 1995.

[3] G. van den Bergen. "Efficient collision detection of
complex deformable models using AABB trees."
Journal of Graphics Tools, 2(4):1-14, 1997.

[4] G. Zachmann and W. Felger. "The boxtree:
enabling realtime and exact collision detection of
arbitrary polyhedra." In Proc. of Workshop on
Simulation and Interaction in Virtual
Environments, SIVE 95, pages 104-113, 1995.

[5] S. Gottschalk, M. C. Lin, and D. Manocha.
"OBBTree: A hierarchical structure for rapid

52

interference detection." In Proc. of ACM
SIGGRAPH, pages 171-180, 1996.

[6] J. T. Klosowski, M. Held, J. S. B. Mitchell, H.
Sowizral, and K. Zikan. "Efficient collision
detection using bounding volume hierarchies of
k-DOPs." IEEE Transactions on Visualization and
Computer Graphics, 4(1):21-36, 1998.

[7] T. He. "Fast collision detection using QuOSPO
trees." In Symposium on Interactive 3D Graphics,
pages 55-62, 1999.

[8] M. Teschner, B. Heidelberger, M. Mueller, D.
Pomeranets, and M. Gross. "Optimized spatial
hashing for collision detection of deformable
objects." In Proc. of Vision, Modeling,
Visualization, pages 47-54, 2003.

[9] J. Mezger, S. Kimmerle, and O. Etzmuss.
"Hierachical techniques in collision detection for
cloth animation." Journal of WSCG, 11(2):322-329,
2003.

[10] M. Shinya and M. Forgue. "Interference detection
through rasterization." Journal of Visualization
and Computer Animation, 2(4):131-134, 1991.

[11] G. Baciu, S. K. Wong, and H. Sun. "RECODE: An
image-based collision detection algorithm." Journal
of Visualization and Computer Animation,
10(4):181-192, 1999.

[12] K. Myszkowski, O.G. Okunev, and T.L. Kunii.
"Fast collision detection between computer solids
using rasterizing graphics hardware." Visual
Computer, 11:497-511, 1995.

[13] K.E. Hoff, A. Zaferakis, M. C. Lin, and D.
Manocha. "Fast 3D geometric proximity queries
between rigid and deformable models using
graphics hardware acceleration." Technical report,
Department of Computer Science, University of
North Carolina, 2002.

[14] T. Vassilev, B. Spanlang, and Y. Chrysanthou.
"Fast cloth animation on walking avatars."
Computer Graphics Forum (Proc. of
Eurographics01), 20(3):260-267, 2001.

[15] B. Heidelberger, M. Teschner, and M. Gross.
"Realtime volumetric intersections of deforming
objects." In Proc. of Vision, Modeling and
Visualization, pages 461-468, 2003.

[16] B. Heidelberger, M. Teschner, and M. Gross.
"Detection of collisions and self-collisions using
imagespace techniques." In Proc. Computer
Graphics, Visualization and Computer Vision
WSCG’'04, pages 145-152, 2004.

[17] N. K. Govindaraju, S. Redon, M.C. Lin, and D.
Manocha. "CULLIDE: Interactive collision detection
between complex models in large environments

using graphics hardware." In Proc. of ACM
SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pages 25-32, 2003.

[18] N. K. Govindaraju, D. Knott, N. Jain, I. Kabul,
R. Tamstorf, R. Gayle, M. C. Lin, and D.
Manocha. "Interactive collision detection between
deformablemodels using chromatic decomposition."
In Proc. of ACM SIGGRAPH 2005, pages 991-999,
2005.

[19] D. Knott and D. Pai. "CinDeR: Collision and
interference detection in real-time using graphics
hardware." In Proc. of Graphics Interface ’'03,
pages 73-80, 2003. ociety.

[20] A. Rege. "Occlusion - hp and nv extensions." In
Game Developers Conference Presentation, 2002.
http://developer.nvidia.com/attach/6715.

[21] S. Green. "The opengl framebuffer object
extension." In Game Developers Conference
Presentation, 2005.
http://download.nvidia.com/developer/presentations
/2005/GDC/OpenGL_Day/OpenGL_FrameBuffer_Obje
ct.pdf.

장 한 용
2005년 2월 고려대학교 컴퓨터학과 졸업
(이학사). 2005년 3월 ~ 현재 고려대학
교 컴퓨터학과 미디어랩 석사과정. 관심
분야는 실시간 렌더링.

정 택 상
2005년 2월 고려대학교 컴퓨터학과 졸업
(이학사). 2005년 3월 ~ 현재 고려대학
교 컴퓨터학과 미디어랩 석사과정. 관심
분야는 실시간 렌더링.

한 정 현
1996년 USC 컴퓨터학과 졸업(공학박사).
1996년 ~ 1997년 미국 상무성(NIST)
Manufacturing Systems Integration
Division 연구원. 2004년 3월 ~ 현재
고려대학교 컴퓨터학과 교수. 관심분야는

실시간 렌더링.

