• 제목/요약/키워드: Text mining analysis

검색결과 1,221건 처리시간 0.028초

A Study on FIFA Partner Adidas of 2022 Qatar World Cup Using Big Data Analysis

  • Kyung-Won, Byun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권1호
    • /
    • pp.164-170
    • /
    • 2023
  • The purpose of this study is to analyze the big data of Adidas brand participating in the Qatar World Cup in 2022 as a FIFA partner to understand useful information, semantic connection and context from unstructured data. Therefore, this study collected big data generated during the World Cup from Adidas participating in sponsorship as a FIFA partner for the 2022 Qatar World Cup and collected data from major portal sites to understand its meaning. According to text mining analysis, 'Adidas' was used the most 3,340 times based on the frequency of keyword appearance, followed by 'World Cup', 'Qatar World Cup', 'Soccer', 'Lionel Messi', 'Qatar', 'FIFA', 'Korea', and 'Uniform'. In addition, the TF-IDF rankings were 'Qatar World Cup', 'Soccer', 'Lionel Messi', 'World Cup', 'Uniform', 'Qatar', 'FIFA', 'Ronaldo', 'Korea', and 'Nike'. As a result of semantic network analysis and CONCOR analysis, four groups were formed. First, Cluster A named it 'Qatar World Cup Sponsor' as words such as 'Adidas', 'Nike', 'Qatar World Cup', 'Sponsor', 'Sponsor Company', 'Marketing', 'Nation', 'Launch', 'Official', 'Commemoration' and 'National Team' were formed into groups. Second, B Cluster named it 'Group stage' as words such as 'Qatar', 'Uruguay', 'FIFA' and 'group stage' were formed into groups. Third, C Cluster named it 'Winning' as words such as 'World Cup Winning', 'Champion', 'France', 'Argentina', 'Lionel Messi', 'Advertising' and 'Photograph' formed a group. Fourth, D Cluster named it 'Official Ball' as words such as 'Official Ball', 'World Cup Official Ball', 'Soccer Ball', 'All Times', 'Al Rihla', 'Public', 'Technology' was formed into groups.

한국의 중남미 지역연구 네트워크와 중심성 및 무역과 경제에 대한 토픽 변동분석 (Network, Centrality, and Topic Analysis on Korea's Trade and Economy with Latin America and the Caribbean Area)

  • 이재득
    • 무역학회지
    • /
    • 제47권6호
    • /
    • pp.189-209
    • /
    • 2022
  • This study aims to analyze Latin America and the Caribbean papers published in Korea during the past 2000-2020 years. Through this study, it is possible to understand the main subject and direction of research in Korea's Latin America and the Caribbean area. As the research mythologies, this study uses the text mining and Social Network Analysis such as frequency analysis, several centrality analyses, and topic analysis. After analyzing the empirical results, there has been a tendency to change the key words and centrality coefficients between 2000-2010 and 2011-2020 years. During 2011-2020 years, the most frequent keywords were changed from Neoliberalism and culture to policy education, and economy related words. The degree and closeness centrality analyses appeared the higher frequency key words. However, the eigenvector centrality appeared very different from the order of frequency key words. The topic analysis shows that the culture, language, and Neoliberalism were the most important keywords during 2000-2010 years but economy, labor trade, industry, development became the most important keywords during 2011-2020 years in topics.

텍스트 마이닝 기법을 이용한 컴퓨터공학 및 정보학 분야 연구동향 조사: DBLP의 학술회의 데이터를 중심으로 (Investigation of Topic Trends in Computer and Information Science by Text Mining Techniques: From the Perspective of Conferences in DBLP)

  • 김수연;송성전;송민
    • 정보관리학회지
    • /
    • 제32권1호
    • /
    • pp.135-152
    • /
    • 2015
  • 이 논문의 연구목적은 컴퓨터공학 및 정보학 관련 연구동향을 분석하는 것이다. 이를 위해 텍스트마이닝 기법을 이용하여 DBLP(Digital Bibliography & Library Project)의 학술회의 데이터를 분석하였다. 대부분의 연구동향 분석 연구가 계량서지학적 연구방법을 사용한 것과 달리 이 논문에서는 LDA(Latent Dirichlet Allocation) 기반 다항분포 토픽모델링 기법을 이용하였다. 가능하면 컴퓨터공학 및 정보학과 관련된 광범위한 자료를 수집하기 위해서 DBLP에서 컴퓨터공학 및 정보학과 관련된 353개의 학술회의를 수집 대상으로 하였으며 2000년부터 2011년 기간 동안 출판된 236,170개의 문헌을 수집하였다. 토픽모델링 결과와 주제별 문헌 수, 주제별 학술회의 수를 조사하여 2000년부터 2011년 사이의 주제별 상위 저자와 주제별 상위 학술회의를 제시하였다. 주제동향 분석 결과 네트워크 관련 연구 주제 분야는 성장 패턴을 보였으며, 인공지능, 데이터마이닝 관련 연구 분야는 쇠퇴 패턴을 나타냈고, 지속 패턴을 보인 주제는 웹, 텍스트마이닝, 정보검색, 데이터베이스 관련 연구 주제이며, HCI, 정보시스템, 멀티미디어 시스템 관련 연구 주제 분야는 성장과 하락을 지속하는 변동 패턴을 나타냈다.

의료 웹포럼에서의 텍스트 분석을 통한 정보적 지지 및 감성적 지지 유형의 글 분류 모델 (The Informative Support and Emotional Support Classification Model for Medical Web Forums using Text Analysis)

  • 우지영;이민정
    • 한국IT서비스학회지
    • /
    • 제11권sup호
    • /
    • pp.139-152
    • /
    • 2012
  • In the medical web forum, people share medical experience and information as patients and patents' families. Some people search medical information written in non-expert language and some people offer words of comport to who are suffering from diseases. Medical web forums play a role of the informative support and the emotional support. We propose the automatic classification model of articles in the medical web forum into the information support and emotional support. We extract text features of articles in web forum using text mining techniques from the perspective of linguistics and then perform supervised learning to classify texts into the information support and the emotional support types. We adopt the Support Vector Machine (SVM), Naive-Bayesian, decision tree for automatic classification. We apply the proposed model to the HealthBoards forum, which is also one of the largest and most dynamic medical web forum.

소셜미디어 빅데이터의 텍스트 마이닝과 오피니언 마이닝 기법을 활용한 웹드라마 분석과 제안 (Webdrama Analysis and Recommendation using Text Mining and Opinion Mining Technique of Social Media)

  • 오세종;김치호
    • 만화애니메이션 연구
    • /
    • 통권44호
    • /
    • pp.285-306
    • /
    • 2016
  • 1인 스마트폰 사용으로 웹툰, 웹소설, TV드라마는 생산자에서 소비자에게 직접적으로 소비할 수 있는 Direct-to-Consumer로 전환되고 있다. 특히, 포털사이트의 웹드라마는 새로운 미디어로 급성장하고 있다. '연애세포', '0시의 그녀', '최고의 미래', '우리 옆집에 EXO가 산다' 등을 TV드라마의 시청률처럼 조회수, 유입자, 댓글, 좋아요 등으로 다양한 반응을 분석할 수 있다. 분석 방법은 소셜미디어 빅데이터의 텍스트 마이닝 기법과 오피니언 마이닝 기법으로 작품을 분석했다. 즉, 웹드라마 마다의 특정 키워드를 추출하고, 추출한 키워드의 긍정, 부정, 중립 등 시청자의 감정을 예측할 수도 있다. 주요 인기 웹드라마를 분석한 결과로는 이미 팬을 확보한 K-Pop 아이돌 멤버의 출현과 포털사이트의 편성 회사와의 연관성이 재생수, 유입자, 댓글, 좋아요에 큰 영향을 미치는 것으로 나타났다. 또한 TV 이외의 매체로 '모바일 TV'의 영향력을 증명하였다. 한계점으로는 모바일 특화 콘텐츠 확보와 비즈니스 모델을 정립하는 것이 필요하겠다. 이 부분을 해결한다면, 한국은 웹드라마의 콘텐츠 강국이라는 긍정적 이미지를 보여줄 수 있는 계기가 될 것이다.

Chatting Pattern Based Game BOT Detection: Do They Talk Like Us?

  • Kang, Ah Reum;Kim, Huy Kang;Woo, Jiyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권11호
    • /
    • pp.2866-2879
    • /
    • 2012
  • Among the various security threats in online games, the use of game bots is the most serious problem. Previous studies on game bot detection have proposed many methods to find out discriminable behaviors of bots from humans based on the fact that a bot's playing pattern is different from that of a human. In this paper, we look at the chatting data that reflects gamers' communication patterns and propose a communication pattern analysis framework for online game bot detection. In massive multi-user online role playing games (MMORPGs), game bots use chatting message in a different way from normal users. We derive four features; a network feature, a descriptive feature, a diversity feature and a text feature. To measure the diversity of communication patterns, we propose lightly summarized indices, which are computationally inexpensive and intuitive. For text features, we derive lexical, syntactic and semantic features from chatting contents using text mining techniques. To build the learning model for game bot detection, we test and compare three classification models: the random forest, logistic regression and lazy learning. We apply the proposed framework to AION operated by NCsoft, a leading online game company in Korea. As a result of our experiments, we found that the random forest outperforms the logistic regression and lazy learning. The model that employs the entire feature sets gives the highest performance with a precision value of 0.893 and a recall value of 0.965.

학교시설의 장애물 없는 생활환경(Barrier Free) 인증 사례를 통한 정성평가 텍스트마이닝 기법 적용에 관한 기초연구 (A Basic Study on the Application of Text-Maining Method for Qualitative Evaluation through Barrier Free Certification in School Facilities)

  • 윤평세;이종국
    • 교육녹색환경연구
    • /
    • 제19권1호
    • /
    • pp.25-35
    • /
    • 2020
  • BF인증을 도입하여 운영한 이래 2020년 2월까지 총 6,432건의 인증서 발급이 있었고, 그 중 교육연구시설은 건축물 6,237건 중 1,091건(예비인증 754건, 본인증 337건)으로 약 20%의 BF인증을 취득하였다. BF인증 건축물 평가지표 3개 항목 매개시설, 내부시설, 위생시설 중점적으로 정성평가를 실시하고, 그 도출 결과를 Text Mining 분석 통해 주요 키워드를 도출한다. 도출된 결과 매개시설의 경우 접근로에 대한 문제점이 발생되었으며, 내부시설의 계단에 대한 평가사항 중 사용자에 대한 평가지표 마련이 필요하다는 결과를 알 수 있었다. 마지막으로 위생시설의 경우 주민 개발시설에 설치되는 화장실에 대한 개선이 필요한 것을 알 수 있었다. 도출된 결과를 바탕으로 학교시설 BF인증에 필요한 평가지표가 별로도 마련되어야할 것이다.

한국 전통춤과 K-pop 댄스의 융합 : 2018 MMA 방탄소년단 'IDOL' 유튜브 댓글 분석 (Convergence of Korean Traditional Dance and K-Pop Dance : An Analysis of Comments on 2018 MMA BTS 'IDOL' Videos on YouTube)

  • 유지영;김미경
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제13권8호
    • /
    • pp.189-198
    • /
    • 2019
  • 이 연구는 2018년 12월 MMA의 인트로 공연 유튜브 댓글의 텍스트 마이닝을 통해 국내 대중의 반응을 의미화 하는것에 목적이 있다. 이를 위해 지난 10개월간 15개의 유튜브 영상에 달린 댓글을 수집하였다. 데이터의 수집은 Python과 BeautifulSoup프로그램을 통해 총 5,135개의 데이터를 크롤링하였고, 총 3차시에 걸쳐 데이터를 정제한 후 최종 5,080의 데이터를 분석자료로 활용하였다. 데이터 분석에는 텍스트 마이닝 기법이 적용되였고, 정제, 분석, 시각화의 모든 과정은 텍스톰(Textom) 프로그램을 이용하였다. 연구결과 키워드 분석에서는 '무대', '한국', '영상', '최고', '멋', '춤', '아이돌', '레전드', '사랑', '감사'등의 키워드 순으로 나타났고, '국뽕'이나 '올림픽'과 같은 키워드도 빈번하게 나타났다. N-gram 분석에서는 '한국의 아이돌 무대 중 전설로 남을법한 최고의 무대', '한국의 전통문화를 보여준 아이돌의 무대'라는 문맥의 댓글이 상위권에 랭킹되었다. 이와같은 키워드 분석결과를 바탕으로 토픽모델링을 적용하여 총 5개의 토픽에서 상위 5개의 키워드를 추출하였다. 토픽의 내용과 분포도를 분석한 결과 이 공연영상에 대한 댓글의 토픽은 크게 '공연무대에 대한 극찬', '한국전통춤을 융합하여 예술적으로 승화시킨 것에 대한 애정', '멋진 춤 영상을 올려준 것에 대한 감사한 마음'으로 크게 3가지의 반응으로 이루진 것을 확인하였다.

국방 기사 자동 분석 시스템 구축 방안 연구 (A Study on Automatic Analysis System of National Defense Articles)

  • 김현중;김우주
    • 한국군사과학기술학회지
    • /
    • 제21권1호
    • /
    • pp.86-93
    • /
    • 2018
  • Since media articles, which have a great influence on public opinion, are transmitted to the public through various media, it is very difficult to analyze them manually. There are many discussions on methods that can collect, process, and analyze documents in the academia, but this is mostly done in the areas related to politics and stocks, and national-defense articles are poorly researched. In this study, we will explain how to build an automatic analysis system of national defense articles that can collect information on defense articles automatically, and can process information quickly by using topic modeling with LDA, emotional analysis, and extraction-based text summarization.

텍스트마이닝을 활용한 연구동향 분석: 소셜네트워크서비스를 중심으로 (Research Trends Investigation Using Text Mining Techniques: Focusing on Social Network Services)

  • 윤혜진;김창식;곽기영
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권3호
    • /
    • pp.513-519
    • /
    • 2018
  • 본 연구의 목적은 소셜네트워크서비스 주제에 관한 연구동향을 조사하는 것이다. 연구의 목적을 달성하기 위해서 웹오브사이언스 데이터베이스에서 제목에 'Social Network Service(SNS)'를 포함하는 1994년부터 2016년까지 출판된 논문 초록 308편을 분석 하였다. 본 연구에서는 텍스트마이닝 기법 중에서 최근 많이 적용되는 토픽모델링기법을 활용하였다. 토픽모델링 분석결과 20개의 토픽(신뢰, 지지, 만족 모델, 조직 지배구조, 모바일 시스템, 인터넷 마케팅, 대학생 효과, 의견 확산, 고객, 정보보호, 건강관리, 웹 협업, 방법, 학습 효과, 지식, 개인 이론, 아동 지지, 알고리즘, 미디어 참여, 문맥 시스템)이 도출되었다. 또한 시계열회귀분석 결과 모든 토픽은 상승 추세로 나타났다.