• Title/Summary/Keyword: Text data

Search Result 2,953, Processing Time 0.026 seconds

An Efficient Machine Learning-based Text Summarization in the Malayalam Language

  • P Haroon, Rosna;Gafur M, Abdul;Nisha U, Barakkath
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1778-1799
    • /
    • 2022
  • Automatic text summarization is a procedure that packs enormous content into a more limited book that incorporates significant data. Malayalam is one of the toughest languages utilized in certain areas of India, most normally in Kerala and in Lakshadweep. Natural language processing in the Malayalam language is relatively low due to the complexity of the language as well as the scarcity of available resources. In this paper, a way is proposed to deal with the text summarization process in Malayalam documents by training a model based on the Support Vector Machine classification algorithm. Different features of the text are taken into account for training the machine so that the system can output the most important data from the input text. The classifier can classify the most important, important, average, and least significant sentences into separate classes and based on this, the machine will be able to create a summary of the input document. The user can select a compression ratio so that the system will output that much fraction of the summary. The model performance is measured by using different genres of Malayalam documents as well as documents from the same domain. The model is evaluated by considering content evaluation measures precision, recall, F score, and relative utility. Obtained precision and recall value shows that the model is trustable and found to be more relevant compared to the other summarizers.

Efficient Emotion Classification Method Based on Multimodal Approach Using Limited Speech and Text Data (적은 양의 음성 및 텍스트 데이터를 활용한 멀티 모달 기반의 효율적인 감정 분류 기법)

  • Mirr Shin;Youhyun Shin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.174-180
    • /
    • 2024
  • In this paper, we explore an emotion classification method through multimodal learning utilizing wav2vec 2.0 and KcELECTRA models. It is known that multimodal learning, which leverages both speech and text data, can significantly enhance emotion classification performance compared to methods that solely rely on speech data. Our study conducts a comparative analysis of BERT and its derivative models, known for their superior performance in the field of natural language processing, to select the optimal model for effective feature extraction from text data for use as the text processing model. The results confirm that the KcELECTRA model exhibits outstanding performance in emotion classification tasks. Furthermore, experiments using datasets made available by AI-Hub demonstrate that the inclusion of text data enables achieving superior performance with less data than when using speech data alone. The experiments show that the use of the KcELECTRA model achieved the highest accuracy of 96.57%. This indicates that multimodal learning can offer meaningful performance improvements in complex natural language processing tasks such as emotion classification.

Analysis of patterns in meteorological research and development using a text-mining algorithm (텍스트 마이닝 알고리즘을 이용한 기상청 연구개발분야 과제의 추세 분석)

  • Park, Hongju;Kim, Habin;Park, Taeyoung;Lee, Yung-Seop
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.935-947
    • /
    • 2016
  • This paper considers the analysis of patterns in meteorological research and development using a text-mining algorithm as the method of analyzing unstructured data. To analyze text data, we define a list of terms related to meteorological research and development, construct times series of a term-document matrix through data preprocessing, and identify terms that have upward or downward patterns over time. The proposed methodology is applied to multi-year plans funded by Korea Meteorological Administration research and development programs from 2011 to 2015.

On the development of DES encryption based on Excel Macro (엑셀 매크로기능을 이용한 DES 암호화 교육도구 개발)

  • Kim, Daehak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1419-1429
    • /
    • 2014
  • In this paper, we consider the development of encryption of DES (data encryption standard) based on Microsoft Excel Macro, which was adopted as the FIPS (federal information processing standard) 46 of USA in 1977. Concrete explanation of DES is given. Algorithms for DES encryption are adapted to Excel Macro. By repeating the 16 round which is consisted of diffusion (which hide the relation between plain text and cipher text) and the confusion (which hide the relation between cipher key and cipher text) with Excel Macro, we can easily get the desired DES cipher text.

An Ensemble Approach for Cyber Bullying Text messages and Images

  • Zarapala Sunitha Bai;Sreelatha Malempati
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.59-66
    • /
    • 2023
  • Text mining (TM) is most widely used to find patterns from various text documents. Cyber-bullying is the term that is used to abuse a person online or offline platform. Nowadays cyber-bullying becomes more dangerous to people who are using social networking sites (SNS). Cyber-bullying is of many types such as text messaging, morphed images, morphed videos, etc. It is a very difficult task to prevent this type of abuse of the person in online SNS. Finding accurate text mining patterns gives better results in detecting cyber-bullying on any platform. Cyber-bullying is developed with the online SNS to send defamatory statements or orally bully other persons or by using the online platform to abuse in front of SNS users. Deep Learning (DL) is one of the significant domains which are used to extract and learn the quality features dynamically from the low-level text inclusions. In this scenario, Convolutional neural networks (CNN) are used for training the text data, images, and videos. CNN is a very powerful approach to training on these types of data and achieved better text classification. In this paper, an Ensemble model is introduced with the integration of Term Frequency (TF)-Inverse document frequency (IDF) and Deep Neural Network (DNN) with advanced feature-extracting techniques to classify the bullying text, images, and videos. The proposed approach also focused on reducing the training time and memory usage which helps the classification improvement.

Using Collective Citing Sentences to Recognize Cited Text in Computational Linguistics Articles

  • Kang, In-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.85-91
    • /
    • 2016
  • This paper proposes a collective approach to cited text recognition by exploiting a set of citing text from different articles citing the same article. First, the proposed method gathers highly-ranked cited sentences from the cited article using a group of citing text to create a collective information of probable cited sentences. Then, such collective information is used to determine final cited sentences among highly-ranked sentences from similarity-based cited text recognition. Experiments have been conducted on the data set which consists of research articles from a computational linguistics domain. Evaluation results showed that the proposed method could improve the performance of similarity-based baseline approaches.

Academic Registration Text Classification Using Machine Learning

  • Alhawas, Mohammed S;Almurayziq, Tariq S
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.93-96
    • /
    • 2022
  • Natural language processing (NLP) is utilized to understand a natural text. Text analysis systems use natural language algorithms to find the meaning of large amounts of text. Text classification represents a basic task of NLP with a wide range of applications such as topic labeling, sentiment analysis, spam detection, and intent detection. The algorithm can transform user's unstructured thoughts into more structured data. In this work, a text classifier has been developed that uses academic admission and registration texts as input, analyzes its content, and then automatically assigns relevant tags such as admission, graduate school, and registration. In this work, the well-known algorithms support vector machine SVM and K-nearest neighbor (kNN) algorithms are used to develop the above-mentioned classifier. The obtained results showed that the SVM classifier outperformed the kNN classifier with an overall accuracy of 98.9%. in addition, the mean absolute error of SVM was 0.0064 while it was 0.0098 for kNN classifier. Based on the obtained results, the SVM is used to implement the academic text classification in this work.

R&D Perspective Social Issue Packaging using Text Analysis

  • Wong, William Xiu Shun;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.15 no.3
    • /
    • pp.71-95
    • /
    • 2016
  • In recent years, text mining has been used to extract meaningful insights from the large volume of unstructured text data sets of various domains. As one of the most representative text mining applications, topic modeling has been widely used to extract main topics in the form of a set of keywords extracted from a large collection of documents. In general, topic modeling is performed according to the weighted frequency of words in a document corpus. However, general topic modeling cannot discover the relation between documents if the documents share only a few terms, although the documents are in fact strongly related from a particular perspective. For instance, a document about "sexual offense" and another document about "silver industry for aged persons" might not be classified into the same topic because they may not share many key terms. However, these two documents can be strongly related from the R&D perspective because some technologies, such as "RF Tag," "CCTV," and "Heart Rate Sensor," are core components of both "sexual offense" and "silver industry." Thus, in this study, we attempted to discover the differences between the results of general topic modeling and R&D perspective topic modeling. Furthermore, we package social issues from the R&D perspective and present a prototype system, which provides a package of news articles for each R&D issue. Finally, we analyze the quality of R&D perspective topic modeling and provide the results of inter- and intra-topic analysis.

Interactive Typography System using Combined Corner and Contour Detection

  • Lim, Sooyeon;Kim, Sangwook
    • International Journal of Contents
    • /
    • v.13 no.1
    • /
    • pp.68-75
    • /
    • 2017
  • Interactive Typography is a process where a user communicates by interacting with text and a moving factor. This research covers interactive typography using real-time response to a user's gesture. In order to form a language-independent system, preprocessing of entered text data presents image data. This preprocessing is followed by recognizing the image data and the setting interaction points. This is done using computer vision technology such as the Harris corner detector and contour detection. User interaction is achieved using skeleton information tracked by a depth camera. By synchronizing the user's skeleton information acquired by Kinect (a depth camera,) and the typography components (interaction points), all user gestures are linked with the typography in real time. An experiment was conducted, in both English and Korean, where users showed an 81% satisfaction level using an interactive typography system where text components showed discrete movements in accordance with the users' gestures. Through this experiment, it was possible to ascertain that sensibility varied depending on the size and the speed of the text and interactive alteration. The results show that interactive typography can potentially be an accurate communication tool, and not merely a uniform text transmission system.

A novel, reversible, Chinese text information hiding scheme based on lookalike traditional and simplified Chinese characters

  • Feng, Bin;Wang, Zhi-Hui;Wang, Duo;Chang, Ching-Yun;Li, Ming-Chu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.269-281
    • /
    • 2014
  • Compared to hiding information into digital image, hiding information into digital text file requires less storage space and smaller bandwidth for data transmission, and it has obvious universality and extensiveness. However, text files have low redundancy, so it is more difficult to hide information in text files. To overcome this difficulty, Wang et al. proposed a reversible information hiding scheme using left-right and up-down representations of Chinese characters, but, when the scheme is implemented, it does not provide good visual steganographic effectiveness, and the embedding and extracting processes are too complicated to be done with reasonable effort and cost. We observed that a lot of traditional and simplified Chinese characters look somewhat the same (also called lookalike), so we utilize this feature to propose a novel information hiding scheme for hiding secret data in lookalike Chinese characters. Comparing to Wang et al.'s scheme, the proposed scheme simplifies the embedding and extracting procedures significantly and improves the effectiveness of visual steganographic images. The experimental results demonstrated the advantages of our proposed scheme.