• Title/Summary/Keyword: Text data

Search Result 2,953, Processing Time 0.038 seconds

Analysis of Factors Affecting Surge in Container Shipping Rates in the Era of Covid19 Using Text Analysis (코로나19 판데믹 이후 컨테이너선 운임 상승 요인분석: 텍스트 분석을 중심으로)

  • Rha, Jin Sung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.111-123
    • /
    • 2022
  • In the era of the Covid19, container shipping rates are surging up. Many studies have attempted to investigate the factors affecting a surge in container shipping rates. However, there is limited literature using text mining techniques for analyzing the underlying causes of the surge. This study aims to identify the factors behind the unprecedented surge in shipping rates using network text analysis and LDA topic modeling. For the analysis, we collected the data and keywords from articles in Lloyd's List during past two years(2020-2021). The results of the text analysis showed that the current surge is mainly due to "US-China trade war", "rising blanking sailings", "port congestion", "container shortage", and "unexpected events such as the Suez canal blockage".

Psalm Text Generator Comparison Between English and Korean Using LSTM Blocks in a Recurrent Neural Network (순환 신경망에서 LSTM 블록을 사용한 영어와 한국어의 시편 생성기 비교)

  • Snowberger, Aaron Daniel;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.269-271
    • /
    • 2022
  • In recent years, RNN networks with LSTM blocks have been used extensively in machine learning tasks that process sequential data. These networks have proven to be particularly good at sequential language processing tasks by being more able to accurately predict the next most likely word in a given sequence than traditional neural networks. This study trained an RNN / LSTM neural network on three different translations of 150 biblical Psalms - in both English and Korean. The resulting model is then fed an input word and a length number from which it automatically generates a new Psalm of the desired length based on the patterns it recognized while training. The results of training the network on both English text and Korean text are compared and discussed.

  • PDF

Comparisons of Practical Performance for Constructing Compressed Suffix Arrays (압축된 써픽스 배열 구축의 실제적인 성능 비교)

  • Park, Chi-Seong;Kim, Min-Hwan;Lee, Suk-Hwan;Kwon, Ki-Ryong;Kim, Dong-Kyue
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.5_6
    • /
    • pp.169-175
    • /
    • 2007
  • Suffix arrays, fundamental full-text index data structures, can be efficiently used where patterns are queried many times. Although many useful full-text index data structures have been proposed, their O(nlogn)-bit space consumption motivates researchers to develop more space-efficient ones. However, their space efficient versions such as the compressed suffix array and the FM-index have been developed; those can not reduce the practical working space because their constructions are based on the existing suffix array. Recently, two direct construction algorithms of compressed suffix arrays from the text without constructing the suffix array have been proposed. In this paper, we compare practical performance of these algorithms of compressed suffix arrays with that of various algorithms of suffix arrays by measuring the construction times, the peak memory usages during construction and the sizes of their final outputs.

Exploring Information Ethics Issues based on Text Mining using Big Data from Web of Science (Web of Science 빅데이터를 활용한 텍스트 마이닝 기반의 정보윤리 이슈 탐색)

  • Kim, Han Sung
    • The Journal of Korean Association of Computer Education
    • /
    • v.22 no.3
    • /
    • pp.67-78
    • /
    • 2019
  • The purpose of this study is to explore information ethics issues based on academic big data from Web of Science (WoS) and to provide implications for information ethics education in informatics subject. To this end, 318 published papers from WoS related to information ethics were text mined. Specifically, this paper analyzed the frequency of key-words(TF, DF, TF-IDF), information ethics issues using topic modeling, and frequency of appearances by year for each issue. This paper used 'tm', 'topicmodel' package of R for text mining. The main results are as follows. First, this paper confirmed that the words 'digital', 'student', 'software', and 'privacy' were the main key-words through TF-IDF. Second, the topic modeling analysis showed 8 issues such as 'Professional value', 'Cyber-bullying', 'AI and Social Impact' et al., and the proportion of 'Professional value' and 'Cyber-bullying' was relatively high. This study discussed the implications for information ethics education in Korea based on the results of this analysis.

Study of Analysis for Autonomous Vehicle Collision Using Text Embedding (텍스트 임베딩을 이용한 자율주행자동차 교통사고 분석에 관한 연구)

  • Park, Sangmin;Lee, Hwanpil;So, Jaehyun(Jason);Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.160-173
    • /
    • 2021
  • Recently, research on the development of autonomous vehicles has increased worldwide. Moreover, a means to identify and analyze the characteristics of traffic accidents of autonomous vehicles is needed. Accordingly, traffic accident data of autonomous vehicles are being collected in California, USA. This research examined the characteristics of traffic accidents of autonomous vehicles. Primarily, traffic accident data for autonomous vehicles were analyzed, and the text data used text-embedding techniques to derive major keywords and four topics. The methodology of this study is expected to be used in the analysis of traffic accidents in autonomous vehicles.

Text Mining of Online News, Social Media, and Consumer Review on Artificial Intelligence Service (인공지능 서비스에 대한 온라인뉴스, 소셜미디어, 소비자리뷰 텍스트마이닝)

  • Li, Xu;Lim, Hyewon;Yeo, Harim;Hwang, Hyesun
    • Human Ecology Research
    • /
    • v.59 no.1
    • /
    • pp.23-43
    • /
    • 2021
  • This study looked through the text mining analysis to check the status of the virtual assistant service, and explore the needs of consumers, and present consumer-oriented directions. Trendup 4.0 was used to analyze the keywords of AI services in Online News and social media from 2016 to 2020. The R program was used to collect consumer comment data and implement Topic Modeling analysis. According to the analysis, the number of mentions of AI services in mass media and social media has steadily increased. The Sentimental Analysis showed consumers were feeling positive about AI services in terms of useful and convenient functional and emotional aspects such as pleasure and interest. However, consumers were also experiencing complexity and difficulty with AI services and had concerns and fears about the use of AI services in the early stages of their introduction. The results of the consumer review analysis showed that there were topics(Technical Requirements) related to technology and the access process for the AI services to be provided, and topics (Consumer Request) expressed negative feelings about AI services, and topics(Consumer Life Support Area) about specific functions in the use of AI services. Text mining analysis enable this study to confirm consumer expectations or concerns about AI service, and to examine areas of service support that consumers experienced. The review data on each platform also revealed that the potential needs of consumers could be met by expanding the scope of support services and applying platform-specific strengths to provide differentiated services.

Construction of Text Summarization Corpus in Economics Domain and Baseline Models

  • Sawittree Jumpathong;Akkharawoot Takhom;Prachya Boonkwan;Vipas Sutantayawalee;Peerachet Porkaew;Sitthaa Phaholphinyo;Charun Phrombut;Khemarath Choke-mangmi;Saran Yamasathien;Nattachai Tretasayuth;Kasidis Kanwatchara;Atiwat Aiemleuk;Thepchai Supnithi
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.33-43
    • /
    • 2024
  • Automated text summarization (ATS) systems rely on language resources as datasets. However, creating these datasets is a complex and labor-intensive task requiring linguists to extensively annotate the data. Consequently, certain public datasets for ATS, particularly in languages such as Thai, are not as readily available as those for the more popular languages. The primary objective of the ATS approach is to condense large volumes of text into shorter summaries, thereby reducing the time required to extract information from extensive textual data. Owing to the challenges involved in preparing language resources, publicly accessible datasets for Thai ATS are relatively scarce compared to those for widely used languages. The goal is to produce concise summaries and accelerate the information extraction process using vast amounts of textual input. This study introduced ThEconSum, an ATS architecture specifically designed for Thai language, using economy-related data. An evaluation of this research revealed the significant remaining tasks and limitations of the Thai language.

A Development design Image DataBase (디자인 이미지데이터베이스 구축사례 연구)

  • 정지홍
    • Archives of design research
    • /
    • v.13 no.3
    • /
    • pp.313-320
    • /
    • 2000
  • Currently, The new wave of information technology has enormously influenced every field. In the Held of design, it is time to strive possible efforts in order to accumulate the design-related knowledge by maintaining, managing and controlling design information in a systematic manner, getting out of the old stage of mere use of data itself. Due to remarkable progress in communication media and speed, and file compression technology, text-centric data has been shifting to multimedia data such as image and motion picture. So it is currently required that methologies be developed to effectively utilize the related information. With respect to the processing of image data, it is certain that the optimal method should be come up with reflecting the unique characteristics and utilization of image data, apart from the traditional way of processing and storing the legacy text-based data. The study suggests the system of indexing and implementing design image information through the case of analyzing design image data, abstracting data elements of image itself, and finally applying it to building image-oriented database for use.

  • PDF

A Comparison of Starbucks between South Korea and U.S.A. through Big Data Analysis (빅데이터 분석을 통한 한국과 미국의 스타벅스 비교 분석)

  • Jo, Ara;Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.23 no.8
    • /
    • pp.195-205
    • /
    • 2017
  • The purpose of this study was to compare the Starbucks in South Korea with Starbucks in U.S.A through the semantic network analysis of big data by collecting online data with SCTM(Smart Crawling & Text Mining) program which was developed by big data research institute at Kyungsung University, a data collecting and processing program. The data collection period was from January 1st 2014 to December 7th 2017, and packaged Netdraw along with UCINET 6.0 were utilized for data analysis and visualization. After performing CONCOR(convergence of iterated correlation) analysis and centrality analysis, this study illustrated the current characteristics of Starbucks for Korea and U.S.A reflected by the social network and the differences between Korea and U.S.A. Since the Starbucks was greatly developed, especially in Korea. this study also was supposed to provide significant and social-network oriented suggestions for Starbucks USA, Starbucks Korea and also the whole coffee industry. Also this study revealed that big data analytics can generate new insights into variables that have been extensively studied in existing hospitality literature. In addition, implications for theory and practice as well as directions for future research are discussed.

Construction of Retrieval-Based Medical Database

  • Shin Yong-Won;Koo Bong-Oh;Park Byung-Rae
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.485-493
    • /
    • 2004
  • In the current field of Medical Informatics, the information increases, and changes fast, so we can access the various data types which are ranged from text to image type. A small number of technician digitizes these data to establish database, but it is needed a lot of money and time. Therefore digitization by many end-users confronting data and establishment of searching database is needed to manage increasing information effectively. New data and information are taken fast to provide the quality of care, diagnosis which is the basic work in the medicine. And also It is needed the medical database for purpose of private study and novice education, which is tool to make various data become knowledge. However, current medical database is used and developed only for the purpose of hospital work management. In this study, using text input, file import and object images are digitized to establish database by people who are worked at the medicine field but can not expertise to program. Data are hierarchically constructed and then knowledge is established using a tree type database establishment method. Consequently, we can get data fast and exactly through search, apply it to study as subject-oriented classification, apply it to diagnosis as time-depended reflection of data, and apply it to education and precaution through function of publishing questions and reusability of data.

  • PDF