• Title/Summary/Keyword: Text data

Search Result 2,953, Processing Time 0.028 seconds

A Study on Implications of AI Education Policy using Keyword Analysis (키워드 분석을 활용한 인공지능 교육 정책의 시사점 연구)

  • Jaeho Lee;Hongwon Jeong
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.397-406
    • /
    • 2022
  • In this study, We confirmed the three major policy directions presented in "Educational Policy Direction and Core Tasks in the Age of Artificial Intelligence" announced by the government in 2020, and analyzed how the direction and key tasks are reflected in the policy from keywords selected from government policy data related to artificial intelligence education published between '20 and '22. It was extracted and analyzed how the direction and key tasks are reflected in the policy. As a result of text mining and the topic analysis, the direction of education set was analyzed and various types of activities for nurturing talents in the field of artificial intelligence were confirmed. Ultimately, the government's policy direction is to apply the '25 revised curriculum in earnest, while advancing and activating the AI education policy and allowing it to settle naturally in the field. It could be predicted that related policies and tasks would appear more and more.

An Experimental Study on the Automatic Classification of Korean Journal Articles through Feature Selection (자질선정을 통한 국내 학술지 논문의 자동분류에 관한 연구)

  • Kim, Pan Jun
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.1
    • /
    • pp.69-90
    • /
    • 2022
  • As basic data that can systematically support and evaluate R&D activities as well as set current and future research directions by grasping specific trends in domestic academic research, I sought efficient ways to assign standardized subject categories (control keywords) to individual journal papers. To this end, I conducted various experiments on major factors affecting the performance of automatic classification, focusing on feature selection techniques, for the purpose of automatically allocating the classification categories on the National Research Foundation of Korea's Academic Research Classification Scheme to domestic journal papers. As a result, the automatic classification of domestic journal papers, which are imbalanced datasets of the real environment, showed that a fairly good level of performance can be expected using more simple classifiers, feature selection techniques, and relatively small training sets.

A Korean Multi-speaker Text-to-Speech System Using d-vector (d-vector를 이용한 한국어 다화자 TTS 시스템)

  • Kim, Kwang Hyeon;Kwon, Chul Hong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.469-475
    • /
    • 2022
  • To train the model of the deep learning-based single-speaker TTS system, a speech DB of tens of hours and a lot of training time are required. This is an inefficient method in terms of time and cost to train multi-speaker or personalized TTS models. The voice cloning method uses a speaker encoder model to make the TTS model of a new speaker. Through the trained speaker encoder model, a speaker embedding vector representing the timbre of the new speaker is created from the small speech data of the new speaker that is not used for training. In this paper, we propose a multi-speaker TTS system to which voice cloning is applied. The proposed TTS system consists of a speaker encoder, synthesizer and vocoder. The speaker encoder applies the d-vector technique used in the speaker recognition field. The timbre of the new speaker is expressed by adding the d-vector derived from the trained speaker encoder as an input to the synthesizer. It can be seen that the performance of the proposed TTS system is excellent from the experimental results derived by the MOS and timbre similarity listening tests.

A case study of understanding the embodied metaphors for AI education (인공지능 교육을 위한 체화된 메타포 이해 : 언플러그드 활동을 중심으로)

  • Ahn, Solmoe
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.419-424
    • /
    • 2021
  • The purpose of this study is to understand the educational context including the actual learning process and learner perception using the embodied metaphor in AI education. To this end, a class was designed to utilize the embodied metaphor-based unplugged activity through a qualitative approach. Matrix analysis technique was used to analyze the data collected throughout the course of the class to analyze the experiences and perceptions according to the characteristics of the learner, and the learning context. The results of the study were: First, there was a difference according to the learner's prior experience in the effect on the representative knowledge and the subsequent practice process. Next, the embodied metaphor-based unplugged activity showed soft landing effects on practice and text coding. Finally, the organic integration of unplugged and plugged-in classes helped learners understand the potential of computational thinking.

  • PDF

Automated Prioritization of Construction Project Requirements using Machine Learning and Fuzzy Logic System

  • Hassan, Fahad ul;Le, Tuyen;Le, Chau;Shrestha, K. Joseph
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.304-311
    • /
    • 2022
  • Construction inspection is a crucial stage that ensures that all contractual requirements of a construction project are verified. The construction inspection capabilities among state highway agencies have been greatly affected due to budget reduction. As a result, efficient inspection practices such as risk-based inspection are required to optimize the use of limited resources without compromising inspection quality. Automated prioritization of textual requirements according to their criticality would be extremely helpful since contractual requirements are typically presented in an unstructured natural language in voluminous text documents. The current study introduces a novel model for predicting the risk level of requirements using machine learning (ML) algorithms. The ML algorithms tested in this study included naïve Bayes, support vector machines, logistic regression, and random forest. The training data includes sequences of requirement texts which were labeled with risk levels (such as very low, low, medium, high, very high) using the fuzzy logic systems. The fuzzy model treats the three risk factors (severity, probability, detectability) as fuzzy input variables, and implements the fuzzy inference rules to determine the labels of requirements. The performance of the model was examined on labeled dataset created by fuzzy inference rules and three different membership functions. The developed requirement risk prediction model yielded a precision, recall, and f-score of 78.18%, 77.75%, and 75.82%, respectively. The proposed model is expected to provide construction inspectors with a means for the automated prioritization of voluminous requirements by their importance, thus help to maximize the effectiveness of inspection activities under resource constraints.

  • PDF

Text Network Analysis and Topic Modeling of News Articles on Lonely Death (고독사에 관한 언론보도기사의 텍스트네트워크 분석 및 토픽모델링)

  • Kim, Chunmi;Choi, Seungbeom;Kim, Eun Man
    • Journal of Korean Academy of Rural Health Nursing
    • /
    • v.18 no.2
    • /
    • pp.113-124
    • /
    • 2023
  • Purpose: The number of households vulnerable to isolation increases rapidly as social ties decrease, raising concerns about the associated increase in lonely deaths. This study aimed to identify issues related to lonely deaths by analyzing South Korean news articles; and to provide evidence for their use in preventing and managing lonely deaths via community nursing. Methods: This exploratory study analyzed the structure and trends of meaning of lonely deaths by identifying the association between keywords in news articles and lonely deaths. In this study, we searched for all news articles on lonely deaths, covering the period from January 1, 2010, to May 31, 2023. Data preprocessing and purification were conducted, followed by top-keyword extraction, keyword network analysis and topic modeling. The retrieved articles were analyzed using R and Python software. Results: Four main topics were identified: "discovering and responding to lonely death cases", "lonely deaths ending in lonely funerals", "supportive policies to prevent lonely deaths among of older adults", and "local government activities to prevent lonely deaths and support vulnerable populations." Conclusion: Based on these findings, it can be concluded that lonely death is a complex social phenomenon that can be prevented if society shows concern and care. Education related to lonely deaths should be included in nursing curricula for concrete action plans and professional development.

A Systematic Review of Programs for Post-traumatic Stress Disorder Patients in South Korea (외상 후 스트레스 장애 환자를 위한 국내 프로그램 체계적 고찰)

  • Ik-Sung KIM;Eun-Sol JU
    • The Journal of Economics, Marketing and Management
    • /
    • v.12 no.1
    • /
    • pp.97-104
    • /
    • 2024
  • Purpose: This study attempted to systematically review the programs of patients with post-traumatic stress disorder in South Korea over the past decade, identify specific methods and effects, and present program guidance guidelines through them. Research design, data and methodology: This study is a systematic literature review, and studies registered in the RISS, NDSL, DBpia, and KmBASE search databases from January 1, 2013 to August 31, 2023 were targeted. Keywords were 'post-traumatic stress disorder', 'program' or 'treatment'. A total of 2,324 documents were searched, and 237 duplicate papers were excluded. After that, the title and abstract were viewed, and 2,058 papers that did not meet the inclusion criteria and exclusion criteria were excluded. In addition, the full text was checked and the final 11 documents were analyzed excluding 18 documents. Results: Among the 11 literatures, 45.45% of randomized control studies and 54.54% of non-randomized control studies were found. As for gender, 41.18% of women, 28.64% of 30-39 years old, and 34.27% of trauma causes were industrial accidents. Programs for patients with post-traumatic stress disorder were classified into art therapy, cognitive behavior therapy, and mindfulness programs, and art therapy was the most used at 45.45%. The sessions of the program were widely applied at 45.45% for 10 sessions and 36.36% for 60 minutes per session. Conclusions: This study has a limitation in that it only analyzed domestic intervention programs within 10 years. However, this study is meaningful in that it is intended to present program guidance guidelines through reviewing domestic programs for post-traumatic stress patients. In the future, it is necessary to conduct research such as expanding the scope of literature review at home and abroad.

Korea's Trade Rules Analysis using Topic Modeling : from 2000 to 2022 (토픽 모델링을 이용한 한국 무역규범 연구동향 분석 : 2000년~2022년)

  • Byeong-Ho Lim;Jeong-In Chang;Tae-Han Kim;Ha-Neul Han
    • Korea Trade Review
    • /
    • v.48 no.1
    • /
    • pp.55-81
    • /
    • 2023
  • The purpose of this study is to analyze the main issues and trends of Korean trade, and to draw implications for future research regarding trade rules. A total of 476 academic journal are analyzed using English keyword searched for 'Trade Rules' from 2000 to July 2022 in the Korean Journal Citation Index data base. The analysis methodology includes co-occurrence network and topic trend analysis which is a kind of text mining methods. The results shows that key words representing Korea's trade trend fall into four categories in which the number of research journals has rapidly increased, which are Topic 4 (Investment Treaty), Topic 7 (Trade Security), Topic 8 (China's Protectionism), and Topic 11 (Trade Settlement). The major background for these topics is the tension between the United States and China threatening the existing international trade system. A detailed study for China's protectionism, changes in trade security system, and new investment agreements, and changes in payment methods will be the challenges in near future.

A Study on the Perceptions of SW·AI Education for Elementary and Secondary School Teachers Using Text Mining (텍스트 마이닝을 이용한 초·중등 교사의 SW·AI 교육에 대한 인식 연구)

  • Mihyun Chung;Oakyoung Han;Kapsu Kim;Seungki Shin;Jaehyoun Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.57-64
    • /
    • 2023
  • This study analyzed the perceptions of elementary and secondary school teachers regarding the importance of SW/AI education in fostering students' fundamental knowledge and the necessity of integrating SW/AI into education. A total of 830 elementary and secondary school teachers were selected as study subjects using the judgment sampling method. The analysis of survey data revealed that elementary and secondary teachers exhibited a strong awareness of the importance and necessity of SW/AI education, irrespective of school characteristics, region, educational experience, or prior involvement in SW and AI education. Nevertheless, the primary reasons for not implementing SW/AI education were identified as excessive workload and a lack of pedagogical expertise. An analysis of opinions on the essential conditions for implementing SW/AI education revealed that workload reduction, budget support, teacher training to enhance teacher competency, content distribution, expansion of subject-linked courses, and dedicated instructional time allocation were the major influencing factors. These findings indicate a significant demand for comprehensive instructional support and teacher capacity-building programs.

A Unicode based Deep Handwritten Character Recognition model for Telugu to English Language Translation

  • BV Subba Rao;J. Nageswara Rao;Bandi Vamsi;Venkata Nagaraju Thatha;Katta Subba Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.101-112
    • /
    • 2024
  • Telugu language is considered as fourth most used language in India especially in the regions of Andhra Pradesh, Telangana, Karnataka etc. In international recognized countries also, Telugu is widely growing spoken language. This language comprises of different dependent and independent vowels, consonants and digits. In this aspect, the enhancement of Telugu Handwritten Character Recognition (HCR) has not been propagated. HCR is a neural network technique of converting a documented image to edited text one which can be used for many other applications. This reduces time and effort without starting over from the beginning every time. In this work, a Unicode based Handwritten Character Recognition(U-HCR) is developed for translating the handwritten Telugu characters into English language. With the use of Centre of Gravity (CG) in our model we can easily divide a compound character into individual character with the help of Unicode values. For training this model, we have used both online and offline Telugu character datasets. To extract the features in the scanned image we used convolutional neural network along with Machine Learning classifiers like Random Forest and Support Vector Machine. Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMS-P) and Adaptative Moment Estimation (ADAM)optimizers are used in this work to enhance the performance of U-HCR and to reduce the loss function value. This loss value reduction can be possible with optimizers by using CNN. In both online and offline datasets, proposed model showed promising results by maintaining the accuracies with 90.28% for SGD, 96.97% for RMS-P and 93.57% for ADAM respectively.