• Title/Summary/Keyword: Text data

Search Result 2,953, Processing Time 0.027 seconds

An Efficient Estimation of Place Brand Image Power Based on Text Mining Technology (텍스트마이닝 기반의 효율적인 장소 브랜드 이미지 강도 측정 방법)

  • Choi, Sukjae;Jeon, Jongshik;Subrata, Biswas;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.113-129
    • /
    • 2015
  • Location branding is a very important income making activity, by giving special meanings to a specific location while producing identity and communal value which are based around the understanding of a place's location branding concept methodology. Many other areas, such as marketing, architecture, and city construction, exert an influence creating an impressive brand image. A place brand which shows great recognition to both native people of S. Korea and foreigners creates significant economic effects. There has been research on creating a strategically and detailed place brand image, and the representative research has been carried out by Anholt who surveyed two million people from 50 different countries. However, the investigation, including survey research, required a great deal of effort from the workforce and required significant expense. As a result, there is a need to make more affordable, objective and effective research methods. The purpose of this paper is to find a way to measure the intensity of the image of the brand objective and at a low cost through text mining purposes. The proposed method extracts the keyword and the factors constructing the location brand image from the related web documents. In this way, we can measure the brand image intensity of the specific location. The performance of the proposed methodology was verified through comparison with Anholt's 50 city image consistency index ranking around the world. Four methods are applied to the test. First, RNADOM method artificially ranks the cities included in the experiment. HUMAN method firstly makes a questionnaire and selects 9 volunteers who are well acquainted with brand management and at the same time cities to evaluate. Then they are requested to rank the cities and compared with the Anholt's evaluation results. TM method applies the proposed method to evaluate the cities with all evaluation criteria. TM-LEARN, which is the extended method of TM, selects significant evaluation items from the items in every criterion. Then the method evaluates the cities with all selected evaluation criteria. RMSE is used to as a metric to compare the evaluation results. Experimental results suggested by this paper's methodology are as follows: Firstly, compared to the evaluation method that targets ordinary people, this method appeared to be more accurate. Secondly, compared to the traditional survey method, the time and the cost are much less because in this research we used automated means. Thirdly, this proposed methodology is very timely because it can be evaluated from time to time. Fourthly, compared to Anholt's method which evaluated only for an already specified city, this proposed methodology is applicable to any location. Finally, this proposed methodology has a relatively high objectivity because our research was conducted based on open source data. As a result, our city image evaluation text mining approach has found validity in terms of accuracy, cost-effectiveness, timeliness, scalability, and reliability. The proposed method provides managers with clear guidelines regarding brand management in public and private sectors. As public sectors such as local officers, the proposed method could be used to formulate strategies and enhance the image of their places in an efficient manner. Rather than conducting heavy questionnaires, the local officers could monitor the current place image very shortly a priori, than may make decisions to go over the formal place image test only if the evaluation results from the proposed method are not ordinary no matter what the results indicate opportunity or threat to the place. Moreover, with co-using the morphological analysis, extracting meaningful facets of place brand from text, sentiment analysis and more with the proposed method, marketing strategy planners or civil engineering professionals may obtain deeper and more abundant insights for better place rand images. In the future, a prototype system will be implemented to show the feasibility of the idea proposed in this paper.

Time Series Analysis of Park Use Behavior Utilizing Big Data - Targeting Olympic Park - (빅데이터를 활용한 공원 이용행태의 시계열분석 - 올림픽공원을 대상으로 -)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.2
    • /
    • pp.27-36
    • /
    • 2018
  • This study suggests the necessity of behavior analysis as changes to a park environment to reflect user desires can be implemented only by grasping the needs of park users. Online data (blog) were defined as the basic data of the study. After collecting data by 5 - year units, data mining was used to derive the characteristics of the time series behavior while the significance of the online data was verified through social network analysis. The results of the text mining analysis are as follows. First, primary results included 'walking', 'photography', 'riding bicycles'(inline, kickboard, etc.), and 'eating'. Second, in the early days of the collected data, active physical activity such as exercise was the main factor, but recent passive behavior such as eating, using a mobile phone, games, food and drinking coffee also appeared as a new behavior characteristic in parks. Third, the factors affecting the behavior of park users are the changes of various conditions of society such as internet development and a culture of expressing unique personalities and styles. Fourth, the special behaviors appearing at Olympic Park were derived from educational activities such as cultural activities including watching performances and history lessons. In conclusion, it has been shown that people's lifestyle changes and the behavior of a park are influenced by the changes of the various times rather than the original purpose that was intended during park planning and design. Therefore, it is necessary to create an environment tailored to users by considering the main behaviors and influencing factors of Olympic Park. Text mining used as an analytical method has the merit that past data can be collected. Therefore, it is possible to form analysis from a long-term viewpoint of behavior analysis as well as to measure new behavior and value with derived keywords. In addition, the validity of online data was verified through social network analysis to increase the legitimacy of research results. Research on more comprehensive behavior analysis should be carried out by diversifying the types of data collected later, and various methods for verifying the accuracy and reliability of large-volume data will be needed.

Analysis of News Agenda Using Text mining and Semantic Network Analysis: Focused on COVID-19 Emotions (텍스트 마이닝과 의미 네트워크 분석을 활용한 뉴스 의제 분석: 코로나 19 관련 감정을 중심으로)

  • Yoo, So-yeon;Lim, Gyoo-gun
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.47-64
    • /
    • 2021
  • The global spread of COVID-19 around the world has not only affected many parts of our daily life but also has a huge impact on many areas, including the economy and society. As the number of confirmed cases and deaths increases, medical staff and the public are said to be experiencing psychological problems such as anxiety, depression, and stress. The collective tragedy that accompanies the epidemic raises fear and anxiety, which is known to cause enormous disruptions to the behavior and psychological well-being of many. Long-term negative emotions can reduce people's immunity and destroy their physical balance, so it is essential to understand the psychological state of COVID-19. This study suggests a method of monitoring medial news reflecting current days which requires striving not only for physical but also for psychological quarantine in the prolonged COVID-19 situation. Moreover, it is presented how an easier method of analyzing social media networks applies to those cases. The aim of this study is to assist health policymakers in fast and complex decision-making processes. News plays a major role in setting the policy agenda. Among various major media, news headlines are considered important in the field of communication science as a summary of the core content that the media wants to convey to the audiences who read it. News data used in this study was easily collected using "Bigkinds" that is created by integrating big data technology. With the collected news data, keywords were classified through text mining, and the relationship between words was visualized through semantic network analysis between keywords. Using the KrKwic program, a Korean semantic network analysis tool, text mining was performed and the frequency of words was calculated to easily identify keywords. The frequency of words appearing in keywords of articles related to COVID-19 emotions was checked and visualized in word cloud 'China', 'anxiety', 'situation', 'mind', 'social', and 'health' appeared high in relation to the emotions of COVID-19. In addition, UCINET, a specialized social network analysis program, was used to analyze connection centrality and cluster analysis, and a method of visualizing a graph using Net Draw was performed. As a result of analyzing the connection centrality between each data, it was found that the most central keywords in the keyword-centric network were 'psychology', 'COVID-19', 'blue', and 'anxiety'. The network of frequency of co-occurrence among the keywords appearing in the headlines of the news was visualized as a graph. The thickness of the line on the graph is proportional to the frequency of co-occurrence, and if the frequency of two words appearing at the same time is high, it is indicated by a thick line. It can be seen that the 'COVID-blue' pair is displayed in the boldest, and the 'COVID-emotion' and 'COVID-anxiety' pairs are displayed with a relatively thick line. 'Blue' related to COVID-19 is a word that means depression, and it was confirmed that COVID-19 and depression are keywords that should be of interest now. The research methodology used in this study has the convenience of being able to quickly measure social phenomena and changes while reducing costs. In this study, by analyzing news headlines, we were able to identify people's feelings and perceptions on issues related to COVID-19 depression, and identify the main agendas to be analyzed by deriving important keywords. By presenting and visualizing the subject and important keywords related to the COVID-19 emotion at a time, medical policy managers will be able to be provided a variety of perspectives when identifying and researching the regarding phenomenon. It is expected that it can help to use it as basic data for support, treatment and service development for psychological quarantine issues related to COVID-19.

Text Mining-Based Emerging Trend Analysis for e-Learning Contents Targeting for CEO (텍스트마이닝을 통한 최고경영자 대상 이러닝 콘텐츠 트렌드 분석)

  • Kyung-Hoon Kim;Myungsin Chae;Byungtae Lee
    • Information Systems Review
    • /
    • v.19 no.2
    • /
    • pp.1-19
    • /
    • 2017
  • Original scripts of e-learning lectures for the CEOs of corporation S were analyzed using topic analysis, which is a text mining method. Twenty-two topics were extracted based on the keywords chosen from five-year records that ranged from 2011 to 2015. Research analysis was then conducted on various issues. Promising topics were selected through evaluation and element analysis of the members of each topic. In management and economics, members demonstrated high satisfaction and interest toward topics in marketing strategy, human resource management, and communication. Philosophy, history of war, and history demonstrated high interest and satisfaction in the field of humanities, whereas mind health showed high interest and satisfaction in the field of in lifestyle. Studies were also conducted to identify topics on the proportion of content, but these studies failed to increase member satisfaction. In the field of IT, educational content responds sensitively to change of the times, but it may not increase the interest and satisfaction of members. The present study found that content production for CEOs should draw out deep implications for value innovation through technology application instead of simply ending the technical aspect of information delivery. Previous studies classified contents superficially based on the name of content program when analyzing the status of content operation. However, text mining can derive deep content and subject classification based on the contents of unstructured data script. This approach can examine current shortages and necessary fields if the service contents of the themes are displayed by year. This study was based on data obtained from influential e-learning companies in Korea. Obtaining practical results was difficult because data were not acquired from portal sites or social networking service. The content of e-learning trends of CEOs were analyzed. Data analysis was also conducted on the intellectual interests of CEOs in each field.

A Study on the Perception of Corona19 Period Play Culture Based on Big Data Analysis

  • Jung, Seon-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.196-203
    • /
    • 2020
  • In this study, we tried to explore the actual direction for the play culture by looking at the social perception of the change of play culture due to the Corona 19 using big data analysis. For this research, we used Textom, a website specializing in collecting big data, and collected 10,216 data using keywords of "Corona + Play," "Play Culture" and "Leisure" from January 19, 2020 to September 30, 2020, when the first confirmed case of Corona 19 occurred in Korea on various portal sites at home and abroad. The results of this paper showed that the social perception of the play culture in Corona 19 was 51.61%, not much different from the negative image of 48.15%. It is necessary to develop a play culture program that can identify people's various desires and emotions under the premise that situations similar to the current With Corona period and Corona19 can occur at any time, and find mental and physical stability and vitality in unstable situations. In addition, the results of this study can be used as basic data for the development of play culture policies or programs, with the significance that this study helped vitalize big data utilization research in the fields of play, leisure, and culture.

UN-Substituted Video Steganography

  • Maria, Khulood Abu;Alia, Mohammad A.;Alsarayreh, Maher A.;Maria, Eman Abu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.382-403
    • /
    • 2020
  • Steganography is the art of concealing the existence of a secret data in a non-secret digital carrier called cover media. While the image of steganography methods is extensively researched, studies on other cover files remain limited. Videos are promising research items for steganography primitives. This study presents an improved approach to video steganography. The improvement is achieved by allowing senders and receivers exchanging secret data without embedding the hidden data in the cover file as in traditional steganography methods. The method is based mainly on searching for exact matches between the secret text and the video frames RGB channel pixel values. Accordingly, a random key-dependent data is generated, and Elliptic Curve Public Key Cryptography is used. The proposed method has an unlimited embedding capacity. The results show that the improved method is secure against traditional steganography attacks since the cover file has no embedded data. Compared to other existing Steganography video systems, the proposed system shows that the method proposed is unlimited in its embedding capacity, system invisibility, and robustness. The system achieves high precision for data recovery in the receiver. The performance of the proposed method is found to be acceptable across different sizes of video files.

A Study of the Construction and Application of Point of Interest Data for Search and Guide (생활지리정보 검색 및 안내를 위한 POI의 구축 및 활용)

  • Kim, Dae-Sik;Kim, Hyung-Jin;Son, Bong-Soo;Yu, Wann
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.423-430
    • /
    • 2003
  • Generally, elements of DRM(Digital Road Map) consist of road, background and landmark data. The landmark, expressed as text and symbol, on map and additional search data are processed by GISSD(Geo-spatial Information System Service Data). This paper aims to develop the DBMS(Database Management System) for operating landmark and search data, and to discuss the characteristics and application of the DBMS. To accomplish the two objectives, the following four tasks were performed in this study. First, the working scopes of field survey and specification to construct the GISSD were defined. Second, the suggested process of manufacture and design of database were described. Third, the software for required construction and management of the system were developed. Lastly, the properties of developed system and data were analyzed. Especially, the efforts for the GISSD in this study are expected to provide a direct use and practical application to the creation of landmark in DRM and search data.

  • PDF

Design and Construction of Fiber Optical Link Application System for Multi-Video Audio Data Transmission (광MVAD(Multi-Video Audio Data)쌍방향 다채널링크시스템 설계)

  • Lee, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2691-2695
    • /
    • 2009
  • Nowadays Fiber optical communication systems have limitless bandwidth and can be used for transmitting various multimedia data with in real time. It is necessary to construct integrated service systems that can be used in our society whole to communicate multimedia data such as text, image, audio and video data in fiber optic communication systems. In this paper, we have designed and constructed the fiber optical link application system for multi-video/audio data transmission using only one core optical cable upgrading previous fiber optical communication systems based on WDM (Wavelength Division Multiplexer). Using the proposed fiber optical link application system enables us to managing fiber optical communication systems with only one core optical cable using WDM (Wavelength Division Multiplexer) and DEWDM/Wavelength splitter.

Design and Implementation of Self-networking and Replaceable Structure in Mobile Vector Graphics

  • Jeong Gu-Min;Na Seung-Won;Jung Doo-Hee;Lee Yang-Sun
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.6
    • /
    • pp.827-835
    • /
    • 2005
  • In this paper, self-networking and replaceable structure in vector graphics contents are presented for wireless internet service. The wireless networks over 2G or 3G are limited in the sense of the speed and the cost. Considering these characteristics of wireless network, self-networking method and replaceable structure in downloaded contents are introduced in order to save the amount of data and provide variations for contents. During the display of contents, a certain data for the contents is downloaded from the server and it is managed appropriately for the operation of the contents. The downloaded materials are reflected to the original contents using replaceable structure. Also, the downloading and modification are independent of the play. In this implementation, the data consists of control data for control and resource data for image, sound or text. Comparing to the conventional methods which download the whole data, the amount of the transmitted data is very small since only the difference is downloaded. Also, during the play of the contents, the changes are adopted immediately. The whole functions are implemented in wireless handset and the various applications are discussed.

  • PDF

Neural network based approach for dissemination of field measurement information

  • Shin Hyu-Soung;Pande Gyan N.;Kim Chang-Yong;Bae Gyu-Jin;Hong Sung-Wan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.176-183
    • /
    • 2003
  • This paper presents a neural network based approach to disseminating information relating to experimental and field observations in engineering. Although the methodology is generic and can be applied to many areas of engineering science, attention is focussed here solely on geotechnical engineering applications. Field data relating to the settlement of foundations presented by Burland and Burbidge (1985) which led to their well known equation for calculation of settlement, now included in most text books, is re-visited. A part of the data, chosen randomly, is used to train an Artificial Neural Network (ANN), which relates foundation settlement to various causes as identified by the authors. Predictions are made for situations for which data were not used in training. These indicate sufficient accuracy when compared to the original field data. Accuracy of predictions is further improved when all the data are included in the training set. The finally trained ANN is shown to represent these data more accurately than the Burland and Burbidge equation. Based on the above heuristic example, an ANN is presented as an alternative to developing equations and design rules in geotechnical engineering practice. Significant advantages are shown to arise by using this methodology. Ease of updating the ANN, as and when additional data becomes available, being the most important one. Loss of transparency, however, seems to be the main disadvantage.

  • PDF