• Title/Summary/Keyword: Text Pattern

Search Result 302, Processing Time 0.029 seconds

Text Extraction from Complex Natural Images

  • Kumar, Manoj;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.6 no.2
    • /
    • pp.1-5
    • /
    • 2010
  • The rapid growth in communication technology has led to the development of effective ways of sharing ideas and information in the form of speech and images. Understanding this information has become an important research issue and drawn the attention of many researchers. Text in a digital image contains much important information regarding the scene. Detecting and extracting this text is a difficult task and has many challenging issues. The main challenges in extracting text from natural scene images are the variation in the font size, alignment of text, font colors, illumination changes, and reflections in the images. In this paper, we propose a connected component based method to automatically detect the text region in natural images. Since text regions in mages contain mostly repetitions of vertical strokes, we try to find a pattern of closely packed vertical edges. Once the group of edges is found, the neighboring vertical edges are connected to each other. Connected regions whose geometric features lie outside of the valid specifications are considered as outliers and eliminated. The proposed method is more effective than the existing methods for slanted or curved characters. The experimental results are given for the validation of our approach.

Implementation of JBIG2 CODEC with Effective Document Segmentation (문서의 효율적 영역 분할과 JBIG2 CODEC의 구현)

  • 백옥규;김현민;고형화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.575-583
    • /
    • 2002
  • JBIG2 is an International Standard fur compression of Bi-level images and documents. JBIG2 supports three encoding modes for high compression according to region features of documents. One of which is generic region coding for bitmap coding. The basic bitmap coder is either MMR or arithmetic coding. Pattern matching coding method is used for text region, and halftone pattern coding is used for halftone region. In this paper, a document is segmented into line-art, halftone and text region for JBIG2 encoding and JBIG2 CODEC is implemented. For efficient region segmentation of documents, region segmentation method using wavelet coefficient is applied with existing boundary extraction technique. In case of facsimile test image(IEEE-167a), there is improvement in compression ratio of about 2% and enhancement of subjective quality. Also, we propose arbitrary shape halftone region coding, which improves subjective quality in talc neighboring text of halftone region.

A Study on the Text-Independent Speaker Recognition from the Vowel Extraction (모음 검출을 통한 텍스트 독립 화자인식에 관한 연구)

  • 김에녹;복혁규;김형래
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.82-91
    • /
    • 1994
  • In this thesis, we perform the experiment of speaker recognition by identifying vowels in the pronounciation of each speaker. In detail, we extract the vowels from the pronounciation of each speaker first. From it, we check the frequency energgy of 29 channels. After changing these into fuzzy values, we employ the fuzzy inference to recognize the speaker by text-dependent and text-independent methods. For this experiment, an algorithm of extracting vowels is developed, and newly introduced parameter is the frequency energy of the 29 channels computed from the extracted vowels. It shows the features of each speakers better than existing parameters. The advanced point of this paramter is to use the reference pattern only without the help of any codebook. As a rewult, test-dependent method showed about 95.5% rate of recognition, and text-independent method showed about 94.2% rate of recognition.

  • PDF

Benford's Law in Linguistic Texts: Its Principle and Applications (언어 텍스트에 나타나는 벤포드 법칙: 원리와 응용)

  • Hong, Jung-Ha
    • Language and Information
    • /
    • v.14 no.1
    • /
    • pp.145-163
    • /
    • 2010
  • This paper aims to propose that Benford's Law, non-uniform distribution of the leading digits in lists of numbers from many real-life sources, also appears in linguistic texts. The first digits in the frequency lists of morphemes from Sejong Morphologically Analyzed Corpora represent non-uniform distribution following Benford's Law, but showing complexity of numerical sources from complex systems like earthquakes. Benford's Law in texts is a principle reflecting regular distribution of low-frequency linguistic types, called LNRE(large number of rare events), and governing texts, corpora, or sample texts relatively independent of text sizes and the number of types. Although texts share a similar distribution pattern by Benford's Law, we can investigate non-uniform distribution slightly varied from text to text that provides useful applications to evaluate randomness of texts distribution focused on low-frequency types.

  • PDF

Recent Trends in Deep Learning-Based Optical Character Recognition (딥러닝 기반 광학 문자 인식 기술 동향)

  • Min, G.;Lee, A.;Kim, K.S.;Kim, J.E.;Kang, H.S.;Lee, G.H.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.5
    • /
    • pp.22-32
    • /
    • 2022
  • Optical character recognition is a primary technology required in different fields, including digitizing archival documents, industrial automation, automatic driving, video analytics, medicine, and financial institution, among others. It was created in 1928 using pattern matching, but with the advent of artificial intelligence, it has since evolved into a high-performance character recognition technology. Recently, methods for detecting curved text and characters existing in a complicated background are being studied. Additionally, deep learning models are being developed in a way to recognize texts in various orientations and resolutions, perspective distortion, illumination reflection and partially occluded text, complex font characters, and special characters and artistic text among others. This report reviews the recent deep learning-based text detection and recognition methods and their various applications.

Robust Quick String Matching Algorithm for Network Security (네트워크 보안을 위한 강력한 문자열 매칭 알고리즘)

  • Lee, Jong Woock;Park, Chan Kil
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.135-141
    • /
    • 2013
  • String matching is one of the key algorithms in network security and many areas could be benefit from a faster string matching algorithm. Based on the most efficient string matching algorithm in sual applications, the Boyer-Moore (BM) algorithm, a novel algorithm called RQS is proposed. RQS utilizes an improved bad character heuristic to achieve bigger shift value area and an enhanced good suffix heuristic to dramatically improve the worst case performance. The two heuristics combined with a novel determinant condition to switch between them enable RQS achieve a higher performance than BM both under normal and worst case situation. The experimental results reveal that RQS appears efficient than BM many times in worst case, and the longer the pattern, the bigger the performance improvement. The performance of RQS is 7.57~36.34% higher than BM in English text searching, 16.26~26.18% higher than BM in uniformly random text searching, and 9.77% higher than BM in the real world Snort pattern set searching.

Textual communication and its model (텍스트 의사소통과 그 모델)

  • Kim, Huiteak
    • Cross-Cultural Studies
    • /
    • v.27
    • /
    • pp.347-386
    • /
    • 2012
  • This article aims to establish the model of textual communication and its schema. To do this, we must identify the characteristics of textual communication, different from that of the oral, because the model of communication is usually done to show the structure of oral communication. Moreover, we must clarify the status text as '${\acute{e}}nonc{\acute{e}}$', that is to say product of the act of enunciation. The study of the text has now reached to achieve from the perspective of pragmatics, overcoming the structural point of view that dominates long text linguistics. And now, we need to enrich the theoretical basis of the pragmatics of text. Then the search of elements necessary to develop the model and pattern of textual communication can help to establish the elements used to form the theoretical basis. To clarify the characteristics of textual communication, we needed to explain the present communication by the position of reader and the point of view of textual reference. The schema that we proposed is not perfect, but there are still issues to think to complete it. For example, one must take into account the plurality of readers and reflect the relationship between interpretive texts in this schema, etc. This kind of problem is not only required to complete the schema but also to strengthen the basis of the theory of textual communication and the pragmatics of text.