Acknowledgement
본 연구는 문화체육관광부 및 한국콘텐츠진흥원의 2022년도 문화기술 연구개발 사업으로 수행되었음[과제명: 인공지능 기반 개방형 한문 고서 번역 및 해석 지원 기술 개발, 과제번호: R2021040267, 기여율: 100%].
References
- Z. Raisi et al., "Text detection and recognition in the wild: A review," arXiv preprint, CoRR, 2020, arXiv: 2006.04305.
- R. Rake, "Image recognition market," Allied Market Research, 2018.
- A . Bissacco et al., "PhotoOCR: Reading text in uncontrolled conditions," in Proc. IEEE Int. Conf. Comput. Vis., (Sydney, Australia), Dec. 2013, pp. 785-792.
- L. Neumann et al., "A method for text localization and recognition in real-world images," in Proc. Asian Conf. Comput. Vis., (Queenstown, New Zealand), Nov. 2010, pp. 770-783.
- Y. Zhu, C. Yao, and X. Bai, "Scene text detection and recognition: Recent advances and future trends," Front. Comput. Sci., vol. 10, no. 1, 2016.
- Q. Ye and D. Doermann, "Text detection and recognition in imagery: A survey," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 7, 2015.
- M. Liao et al., "Real-time scene text detection with differentiable binarization and adaptive scale fusion," IEEE Trans. Pattern Anal. Mach. Intell., 2022, p. 1.
- S. Long et al., "Textsnake: A flexible representation for detecting text of arbitrary shapes," in Proc. Eur. Conf. Comput. Vis., (Munich, Germany), Sept. 2018, pp. 20-36.
- Y. Baek et al., "Character region awareness for text detection," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., (Long Beach, CA, USA), June 2019, pp. 9365-9374.
- Y. Ye et al., "TextFuseNet: Scene text detection with richer fused features," in Proc. Int. Joint Conf. Artif. Intell. (IJCAI-20), (Yokohama, Japan), Jan. 2021, pp. 516-522, https://www.ijcai.org/proceedings/2020/0072.pdf
- N. Subramani et al., "A survey of deep learning approaches for ocr and document understanding," arXiv preprint, CoRR, 2020, arXiv: 2011.13534.
- F. Borisyuk, A. Gordo, and V. Sivakumar, "Rosetta: Large scale system for text detection and recognition in images," in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., (London, United Kingdom), July 2018, pp. 71-79.
- B. Shi, X. Bai, and C. Yao, "An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 11, 2016, pp. 2298-2304. https://doi.org/10.1109/TPAMI.2016.2646371
- W. Liu et al., STAR-Net: A SpaTial Attention Residue Network for Scene Text Recognition, Proceedings of the British Machine Vision Conference (BMVC), BMVA Press, 2016, pp. 43.1.-43.13.
- C.-Y. Lee et al., "Recursive recurrent nets with attention modeling for OCR in the wild," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., (Las Vegas, NV, USA), June 2016, pp. 2231-2239.
- B. Shi et al., "Aster: An attentional scene text recognizer with flexible rectification," IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 9, 2018.
- F. Zhan and S. Lu, "Esir: End-to-end scene text recognition via iterative image rectification," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., (Long Beach, CA, USA), June 2019, pp. 2059-2068.
- Z. Cheng et al., "Aon: Towards arbitrarily-oriented text recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., (Salt Lake City, UT, USA), June 2018, pp. 5571-5579.
- H. Li et al., "Show, attend and read: A simple and strong baseline for irregular text recognition," in Proc. AAAI Conf. Artif. Intel., vol. 33, no. 1, 2019, pp. 8610-8617.
- Q. Wang et al., "Faclstm: Convlstm with focused attention for scene text recognition," arXiv preprint, CoRR, 2019, arXiv: 1904.09405.
- S. Fang et al., "Read like humans: Autonomous, bidirectional and iterative language modeling for scene text recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., (Virtual), June 2021, pp. 7098-7107.
- Y. Wang et al., "From two to one: A new scene text recognizer with visual language modeling network," in Proc. IEEE Conf. Comput. Vis., (Virtual), Oct. 2021, pp. 14194-14203.
- T. He et al., "An end-to-end textspotter with explicit alignment and attention," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., (Salt Lake City, UT, USA), June 2018, pp. 5020-5029.
- W. Feng et al., "Textdragon: An end-to-end framework for arbitrary shaped text spotting," in Proc. IEEE Conf. Comput. Vis., (Seoul, Rep. Korea), Oct. 2019, pp. 9076-9085.
- M. Liao et al., "Mask textspotter v3: Segmentation proposal network for robust scene text spotting," in Euro. Conf. Comput. Vis., (Glasgow, United Kingdom), Aug. 2020, pp. 706-722.
- https://cloud.google.com/vision/
- 황선명, 염희균, "윈도우 기반의 광학문자인식을 이용한 영상 번역 시스템 구현," 사물인터넷융복합논문지, 제5권 제2호, 2019, pp. 15-20.
- https://pdf.abbyy.com/
- A.P. Tafti et al., "OCR as a service: An experimental evaluation of Google Docs OCR, Tesseract, ABBYY FineReader, and Transym," in Proc. Int. Symp. Vis. Comput. (ISVC), (Las Vegas, NV, USA), Dec. 2016, pp. 735-746.
- https://www.camcard.com/
- https://clova.ai/ocr
- http://ocr.selvasai.com/
- https://www.synapsoft.co.kr/ocr/
- 민기현, 이아람, 강현서, "인공지능 기반 한문 고서의 한자 검출을 위한 전처리 알고리즘에 관한 연구," 한국통신학회 추계종합학술발표회, 2021, pp. 597-598.
- 류은주, 문미경, "광학문자인식(OCR)기반 시각장애인용 셀프 E-book," 한국컴퓨터종합학술대회, 2016, pp. 1801-1803.
- 김인택, 안대진, 이해영, "인공지능을 활용한 지능형 기록관리 방안," 한국기록관리학회지, 제17권 제4호, 2017, pp. 225-250. https://doi.org/10.14404/JKSARM.2017.17.4.225
- 임윤지 외, "OCR 기반의 자동 문자인식," 한국소프트웨어종합학술대회, 2019, pp. 1318-1320.
- 백종경 외, "전자문서에서 서식인식과 광학문자인식을 이용한 개인정보 탐지 및 보호 시스템," 한국산학기술학회논문지, 제21권 제5호, 2020, pp. 451-457. https://doi.org/10.5762/KAIS.2020.21.5.451
- 이승훈 외 , "OCR 기술을 이용한 한글 처방전 문자 인식 시스템," 한국정보과학회 학술발표논문집, 2017, pp. 362-364.
- 차영화 외, "객체 감지와 광학 문자 인식을 이용한 아날로그 전력 계량기 이미지에서의 숫자 영역 인식," 한국통신학회 학술대회논문집, 2020, pp. 334-335.
- 이교혁 외, "광심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템," 지능정보연구, 제26권 제2호, 2020, pp. 1-25. https://doi.org/10.13088/JIIS.2020.26.2.001
- 김재철 외 , "필기체 우편영상 주소인식을 위한 문자 추출 알고리즘," 한국정보과학회 학술발표논문집, 2017, pp. 1414-1416.
- 장일식 외, "지능형 감시 카메라 동향 및 시나리오 연구," 한국ITS학회논문지, 제8권 제4호, 2009, pp. 93-101.
- 김건우, "딥러닝 기반 열악 자동차 번호 이미지 복원 및 인식 기술," 주간기술동향, 2020, pp. 27-32.
- Y. Zhu et al., "Cascaded segmentation-detection networks for text-based traffic sign detection," IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1, 2018, pp. 209-219. https://doi.org/10.1109/tits.2017.2768827
- R. Ravindran et al., "Traffic Sign Identification Using Deep Learning," in Proc. Int. Conf. Comput. Sci. Comput. Intell., (Las Vegas, NV, USA), Dec. 2019, pp. 318-323.
- 노대경, "광학문자인식," ASTI Market Insight 2021-024, 2021.