• Title/Summary/Keyword: Text Data Analysis

Search Result 1,555, Processing Time 0.053 seconds

Trends in Research on Patients With COVID-19 in Korean Medical Journals

  • Heejeong Choi;Seunggwan Song;Heesang Ahn;Hyobean Yang;Hyeonseong Lim;Yohan Park;Juhyun Kim;Hongju Yong;Minseok Yoon;Mi Ah Han
    • Journal of Preventive Medicine and Public Health
    • /
    • v.57 no.1
    • /
    • pp.47-54
    • /
    • 2024
  • Objectives: This study was conducted to systematically summarize trends in research concerning patients with coronavirus disease 2019 (COVID-19) as reported in Korean medical journals. Methods: We performed a literature search of KoreaMed from January 2020 to September 2022. We included only primary studies of patients with COVID-19. Two reviewers screened titles and abstracts, then performed full-text screening, both independently and in duplicate. We first identified the 5 journals with the greatest numbers of eligible publications, then extracted data pertaining to the general characteristics, study population attributes, and research features of papers published in these journals. Results: Our analysis encompassed 142 primary studies. Of these, approximately 41.0% reported a funding source, while 3.5% disclosed a conflict of interest. In 2020, 42.9% of studies included fewer than 10 participants; however, by 2022, the proportion of studies with over 200 participants had increased to 40.6%. The most common design was the cohort study (48.6%), followed by case reports/series (35.2%). Only 3 randomized controlled trials were identified. Studies most frequently focused on prognosis (58.5%), followed by therapy/intervention (20.4%). Regarding the type of intervention/exposure, therapeutic clinical interventions comprised 26.1%, while studies of morbidity accounted for 13.4%. As for the outcomes measured, 50.7% of studies assessed symptoms/clinical status/improvement, and 14.1% evaluated mortality. Conclusions: Employing a systematic approach, we examined the characteristics of research involving patients with COVID-19 that was published in Korean medical journals from 2020 onward. Subsequent research should assess not only publication trends over a longer timeframe but also the quality of evidence provided.

Technology Planning through Technology Roadmap: Application of Patent Citation Network (기술로드맵을 통한 기술기획: 특허인용네트워크의 활용)

  • Jeong, Yu-Jin;Yoon, Byung-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5227-5237
    • /
    • 2011
  • Technology roadmap is a powerful tool that considers relationships of technology, product and market and referred as a supporting technology strategy and planning. There are numerous studies that have attempted to develop technology roadmap and case studies on specific technology areas. However, a number of studies have been dependant on brainstorming and discussion of expert group, delphi technique as qualitative analysis rather than systemic and quantitative analysis. To overcome the limitation, patent analysis considered as quite quantitative analysis is employed in this paper. Therefore, this paper proposes new technology roadmapping based on patent citation network considering technology life cycle and suggests planning for undeveloped technology but considered as promising. At first, patent data and citation information are collected and patent citation network is developed on the basis of collected patent information. Secondly, we investigate a stage of technology in the life cycle by considering patent application year and the technology life cycle, and duration of technology development is estimated. In addition, subsequent technologies are grouped as nodes of a super-level technology to show the evolution of the technology for the period. Finally, a technology roadmap is drawn by linking these technology nodes in a technology layer and estimating the duration of development time. Based on technology roadmap, technology planning is conducted to identify undeveloped technology through text mining and this paper suggests characteristics of technology that needs to be developed in the future. In order to illustrate the process of the proposed approach, technology for hydrogen storage is selected in this paper.

The Analysis of 'Software Education' Unit in the Practical Arts Textbooks According to 2015 Revised Curriculum (2015 개정 교육과정에 따른 실과 교과서 '소프트웨어 교육' 단원 분석)

  • Kim, Myeong-nam;Park, SunJu
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.3
    • /
    • pp.255-264
    • /
    • 2019
  • Modern society has become a key factor in determining software competitiveness. Therefore, Korea has required more than 17 hours of software education per year in the actual course subject to the 2015 revised curriculum. In this paper, we analyzed the software related units in 6 kinds of textbooks of elementary school published based on '2015 revised curriculum' and tried to provide basic data for selection of textbooks related to software education in elementary school. As a result of the analysis, the 6 revised textbooks of 2015 appropriately reflected both 'understanding of software', 'procedural problem solving', 'contents of programming element and structure', and I was suggesting appropriate activities. Unit support materials use comics and illustrations to stimulate interest, supplement text, and deepen learning. Four kinds of textbooks provide additional information by presenting reading materials. However, in most textbooks, the proportion of learning using the appendix was low. Although it consists of units focused on knowledge understanding and practice, it can be a textbook that enhances students' interest and participation if they are made of software in daily life, problem solving by procedural thinking, and so on.

Research Trends and Knowledge Structure of Digital Transformation in Fashion (패션 영역에서 디지털 전환 관련 연구동향 및 지식구조)

  • Choi, Yeong-Hyeon;Jeong, Jinha;Lee, Kyu-Hye
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.319-329
    • /
    • 2021
  • This study aims to investigate Korean fashion-related research trends and knowledge structures on digital transformation through information-based approaches. Accordingly, we first identified the current status of the relevant research in Korean academic literature by year and journal; subsequently, we derived key research topics through network analysis, and then analyzed major research trends and knowledge structures by time. From 2010 to 2020, we collected 159 studies published on Korean academic platforms, cleansed data through Python 3.7, and measured centrality and network implementation through NodeXL 1.0.1. The results are as follows: first, related research has been actively conducted since 2016, mainly concentrated in clothing and art areas. Second, the online platform, AR/VR, appeared as the most frequently mentioned topic, and consumer psychological analysis, marketing strategy suggestion, and case analysis were used as the main research methods. Through clustering, major research contents for each sub-major of clothing were derived. Third, major subject by period was considered, which has, over time, changed from consumer-centered research to strategy suggestion, and design development research of platforms or services. This study contributes to enhancing insight into the fashion field on digital transformation, and can be used as a basic research to design research on related topics.

Metamodeling Construction for Generating Test Case via Decision Table Based on Korean Requirement Specifications (한글 요구사항 기반 결정 테이블로부터 테스트 케이스 생성을 위한 메타모델링 구축화)

  • Woo Sung Jang;So Young Moon;R. Young Chul Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.381-386
    • /
    • 2023
  • Many existing test case generation researchers extract test cases from models. However, research on generating test cases from natural language requirements is required in practice. For this purpose, the combination of natural language analysis and requirements engineering is very necessary. However, Requirements analysis written in Korean is difficult due to the diverse meaning of sentence expressions. We research test case generation through natural language requirement definition analysis, C3Tree model, cause-effect graph, and decision table steps as one of the test case generation methods from Korean natural requirements. As an intermediate step, this paper generates test cases from C3Tree model-based decision tables using meta-modeling. This method has the advantage of being able to easily maintain the model-to-model and model-to-text transformation processes by modifying only the transformation rules. If an existing model is modified or a new model is added, only the model transformation rules can be maintained without changing the program algorithm. As a result of the evaluation, all combinations for the decision table were automatically generated as test cases.

International Research Trend on Mountainous Sediment-related Disasters Induced by Earthquakes (지진 유발 산지토사재해 관련 국외 연구동향 분석)

  • Lee, Sang-In;Seo, Jung-Il;Kim, Jin-Hak;Ryu, Dong-Seop;Seo, Jun-Pyo;Kim, Dong-Yeob;Lee, Chang-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.431-440
    • /
    • 2017
  • The 2016 Gyeongju Earthquake ($M_L$ 5.8) (occurred on September 12, 2016) and the 2017 Pohang Earthquake ($M_L$ 5.4) (occurred on November 15, 2017) caused unprecedented damages in South Korea. It is necessary to establish basic data related to earthquake-induced mountainous sediment-related disasters over worldwide. In this study, we analyzed previous international studies on the earthquake-induced mountainous sediment-related disasters, then classified research areas according to research themes using text-mining and co-word analysis in VOSviewer program, and finally examined spatio-temporal research trends by research area. The result showed that the related-researches have been rapidly increased since 2005, which seems to be affected by recent large-scale earthquakes occurred in China, Taiwan and Japan. In addition, the research area related to mountainous sediment-related disasters induced by earthquakes was classified into four subjects: (i) mechanisms of disaster occurrence; (ii) rainfall parameters controlling disaster occurrence; (iii) prediction of potential disaster area using aerial and satellite photographs; and (iv) disaster risk mapping through the modeling of disaster occurrence. These research areas are considered to have a strong correlation with each other. On the threshold year (i.e., 2012-2013), when cumulative number of research papers was reached 50% of total research papers published since 1987, proportions per unit year of all research areas should increase. Especially, the proportion of the research areas related to prediction of potential disaster area using aerial and satellite photographs is highly increased compared to other three research areas. These trends are responsible for the rapidly increasing research papers with study sites in China, and the research papers examined in Taiwan, Japan, and the United States have also contributed to increases in all research areas. The results are could be used as basic data to present future research direction related to mountainous sediment-related disasters induced by earthquakes in South Korea.

A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles (산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로)

  • WonHee Kim;YoungOk Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.287-316
    • /
    • 2023
  • As global energy crisis and the COVID-19 pandemic have emerged as social issues, there is a growing demand for companies to move away from profit-centric business models and embrace sustainable management that balances environmental, social, and governance (ESG) factors. ESG activities of companies vary across industries, and industry-specific weights are applied in ESG evaluations. Therefore, it is important to develop strategic management approaches that reflect the characteristics of each industry and the importance of each ESG factor. Additionally, with the stance of strengthened focus on ESG disclosures, specific guidelines are needed to identify and report on sustainable management activities of domestic companies. To understand corporate sustainability strategies, analyzing ESG reports and news articles by industry can help identify strategic characteristics in specific industries. However, each company has its own unique strategies and report structures, making it difficult to grasp detailed trends or action items. In our study, we analyzed ESG reports (2019-2021) and news articles (2019-2022) of six companies in the 'Finance,' 'Manufacturing,' and 'IT' sectors to examine the sustainability strategies of leading domestic ESG companies. Text mining techniques such as keyword frequency analysis and topic modeling were applied to identify industry-specific, ESG element-specific management strategies and issues. The analysis revealed that in the 'Finance' sector, customer-centric management strategies and efforts to promote an inclusive culture within and outside the company were prominent. Strategies addressing climate change, such as carbon neutrality and expanding green finance, were also emphasized. In the 'Manufacturing' sector, the focus was on creating sustainable communities through occupational health and safety issues, sustainable supply chain management, low-carbon technology development, and eco-friendly investments to achieve carbon neutrality. In the 'IT' sector, there was a tendency to focus on technological innovation and digital responsibility to enhance social value through technology. Furthermore, the key issues identified in the ESG factors were as follows: under the 'Environmental' element, issues such as greenhouse gas and carbon emission management, industry-specific eco-friendly activities, and green partnerships were identified. Under the 'Social' element, key issues included social contribution activities through stakeholder engagement, supporting the growth and coexistence of members and partner companies, and enhancing customer value through stable service provision. Under the 'Governance' element, key issues were identified as strengthening board independence through the appointment of outside directors, risk management and communication for sustainable growth, and establishing transparent governance structures. The exploration of the relationship between ESG disclosures in reports and ESG issues in news articles revealed that the sustainability strategies disclosed in reports were aligned with the issues related to ESG disclosed in news articles. However, there was a tendency to strengthen ESG activities for prevention and improvement after negative media coverage that could have a negative impact on corporate image. Additionally, environmental issues were mentioned more frequently in news articles compared to ESG reports, with environmental-related keywords being emphasized in the 'Finance' sector in the reports. Thus, ESG reports and news articles shared some similarities in content due to the sharing of information sources. However, the impact of media coverage influenced the emphasis on specific sustainability strategies, and the extent of mentioning environmental issues varied across documents. Based on our study, the following contributions were derived. From a practical perspective, companies need to consider their characteristics and establish sustainability strategies that align with their capabilities and situations. From an academic perspective, unlike previous studies on ESG strategies, we present a subdivided methodology through analysis considering the industry-specific characteristics of companies.

Analysis of Rhetorical Sensitivity Scale shown in the Speeches by Winner and Second Prize Winner of <I am a Speaker> in China (《아시연설가(我是演说家)》우승자와 준우승자의 레토릭 지수 비교 분석)

  • 제윤지;나민구
    • Journal of Sinology and China Studies
    • /
    • v.81
    • /
    • pp.161-197
    • /
    • 2019
  • This paper aims to find out how rhetorical the rhetoric effect is in the speeches of the winners and runners-ups in the final round of the fifth final title. The subjects of this paper are the speeches of the winners and runner-ups who won the 5th and 10th finalist finals of "I Am a Speaker", which aired on Beijing TV on March 6, 2019. These speeches have images as well as texts, so we will look at the rhetorical expressions in the text and the speech and gesture language of the speakers. In addition, photographs presented as background data on stage when the winner and the runner-up each speak will be included in the analysis. In this paper, we will apply the "Rhetorical Sensitivity Scale", which quantifies the ability of persuasion as a methodology, and sets up the evaluation items based on the traditional theory of rhetoric and then analyzes two speeches. The traditional theory of rhetoric can be divided into five areas and three persuasive elements. The five areas include idea, disposition, expression, memory, and action delivery. The three persuasion elements are Ethos, Logos, and Pathos. In order to pursue objectivity as much as possible, this paper will proceed with both text analysis with verbal expression and video analysis with field situations at the time of speech.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

Mining Intellectual History Using Unstructured Data Analytics to Classify Thoughts for Digital Humanities (디지털 인문학에서 비정형 데이터 분석을 이용한 사조 분류 방법)

  • Seo, Hansol;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.141-166
    • /
    • 2018
  • Information technology improves the efficiency of humanities research. In humanities research, information technology can be used to analyze a given topic or document automatically, facilitate connections to other ideas, and increase our understanding of intellectual history. We suggest a method to identify and automatically analyze the relationships between arguments contained in unstructured data collected from humanities writings such as books, papers, and articles. Our method, which is called history mining, reveals influential relationships between arguments and the philosophers who present them. We utilize several classification algorithms, including a deep learning method. To verify the performance of the methodology proposed in this paper, empiricists and rationalism - related philosophers were collected from among the philosophical specimens and collected related writings or articles accessible on the internet. The performance of the classification algorithm was measured by Recall, Precision, F-Score and Elapsed Time. DNN, Random Forest, and Ensemble showed better performance than other algorithms. Using the selected classification algorithm, we classified rationalism or empiricism into the writings of specific philosophers, and generated the history map considering the philosopher's year of activity.