• Title/Summary/Keyword: Test of LNA

Search Result 34, Processing Time 0.027 seconds

Programmable RF Built-ln Self-Test Circuit for Low Noise Amplifiers (저잡음 증폭기를 위한 프로그램 가능한 고주파 Built-In Self-Test회로)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1004-1007
    • /
    • 2005
  • This paper presents a programmable RF BIST (Built-in Self-Test) circuit for low noise amplifiers. We have developed a new on-chip RF BIST circuit that measures RF parameters of low noise amplifier (LNA) using only DC measurements. The BIST circuit contains test amplifier with programmable capacitor banks and RF peak detectors. The test circuit utilizes output DC voltage measurements and these measured values are translated into the LNA specifications such as input impedance and gain using the mathematical equations. Our on-chip BIST can be self programmed for 1.8GHz, 2.4GHz and 5.25GHz LNA for GSM, Bluetooth and IEEE802.11g standards.

  • PDF

Failure Analysis and Solution of ESD for Amplifier Used in Telecommunication (통신용 증폭기의 ESD 고장분석과 대책)

  • Hwang, Soon-Mi;Jung, Young-Baek;Kim, Chul-Hee;Lee, Kwan-Hoon
    • Journal of Applied Reliability
    • /
    • v.11 no.3
    • /
    • pp.251-265
    • /
    • 2011
  • Low-noise amplifier(LNA) is a component that amplifies the signal while lowering the noise figure of high-frequency signal. LNA holds a very important position in RF system so that it is widely used for telecommunication. Electro static discharge(ESD) is the most common cause of malfunction for low-powered components, such as Large Scale Integration and IC type LNA is weak in ESD. This thesis studies static effect of communication LNA. It analyzes ESD effect, which occurs within LNA circuit, and describes testing standard and methods. In order to find out LNA's susceptiblity to electro static, two well-recognized communication IC type LNA models were selected to be tested. Then static-induced malfunction was carefully analyzed and it suggests architectural problem and improvement from the LNA's ESD point of view.

The Susceptibility of LNA(Low Noise Amplifier) Due To Front-Door Coupling Under Narrow-Band High Power Electromagnetic Wave (안테나에 커플링되는 협대역 고출력 전자기파에 대한 저잡음 증폭기의 민감성 분석)

  • Hwang, Sun-Mook;Huh, Chang-Su
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.440-446
    • /
    • 2015
  • This study has examined susceptibility of LNA(Low Noise Amplifier) due to Front-Door Coupling under Narrow-Band high power electromagnetic wave. M/DFR(Malfunction/Destruction Failure Rate) was measured to investigate the diagnostic of IC test. In addition, decapsulation analysis was used to understand the inside of the chip state in LNA devices. The experiments is employed as an open-ended waveguide to study the destruction effects of LNA using a 2.45 GHz Magnetron as a high power electromagnetic wave. The susceptibility level of LNA was assessed by electric field strength, and its failure modes were observed. The malfunction of LNA device has showed as the type of self-reset and power-reset. The electric field strength of malfunction threshold is 524 V/m and 1150 V/m respectively. Also, he electric field of destruction threshold is 1530 V/m. Three types of damaged LNA were observed by decapsulation analysis: component, onchipwire, and bondwire destruction. Based on these results, the susceptibility of the LNA can be applied to a database to help elucidate the effects of microwaves on electronic equipment.

LNA Module Development for the Ka-Band Satellite Transponder (Ka-대역 위성중계기용 저잡음 증폭기 모듈 개발)

  • 유영근;염인복
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.323-326
    • /
    • 1998
  • A LNA(Low Nosise Amplifer) module for the Ka-band satellite transponder has been developed, which is composed of developed two MMIC chips and 50$\Omega$ line. This LNA exhibited noise figure less than 3.12dB, linear gain higher than 32dB from 30.085GHz to 30.885GHz frequency range. Temperature test from $20^{\circ}to$ $60^{\circ}C$ of the LNA Module showed very small noise figure and linear gain variation of 0.2 dB and 0.4dB.

  • PDF

A New Automatic Compensation Circuit for Low Noise Amplifiers (저잡음 증폭기를 위한 새로운 자동 보상 회로)

  • Ryu, Jee-Youl;Deboma, Gilbert D.;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.995-998
    • /
    • 2005
  • This paper proposes a new SoC (System-on-Chip)-based automatic compensation circuit (ACC) for 5GHz low noise amplifier (LNA). This circuit is extremely useful for today's RF IC (Radio Frequency Integrated Circuit) devices in a complete RF transceiver environment. The circuit contains RF BIST (Built-ln Self-Test) circuit, Capacitor Mirror Banks (CMB) and digital processing unit (DPU). The ACC automatically adjusts performance of 5GHz LNA by the processor in the SoC transceiver when the LNA goes out of the normal range of operation.

  • PDF

New Programmable RF DFT Circuit for Low Noise Amplifiers (LNA를 위한 새로운 프로그램 가능 고주파 검사용 설계회로)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.28-39
    • /
    • 2007
  • This paper presents a programmable RF DFT (Radio Frequency Design-for-Testability) circuit for low noise amplifiers. We have developed a new on-chip RF DFT circuit that measures RF parameters of low noise amplifier (LNA) using only DC measurements [1, 2]. This circuit is extremely useful for today's RFIC devices in a complete RF transceiver environment. The DFT circuit contains test amplifier with programmable capacitor banks and RF peak detectors. The test circuit utilizes output DC voltage measurements and these measured values are translated into the LNA specifications such as input impedance and gain using the mathematical equations. Our on-chip DFT circuit can be self programmed for 1.8GHz, 2.4GHz and 5.25GHz low noise amplifiers for GSM, Bluetooth and IEEE802.11g standards. The circuit is simple and inexpensive.

A Novel Built-In Self-Test Circuit for 5GHz Low Noise Amplifiers (5GHz 저잡음 증폭기를 위한 새로운 Built-In Self-Test 회로)

  • Ryu Jee-Youl;Noh Seok-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1089-1095
    • /
    • 2005
  • This paper presents a new low-cost Built-In Self-Test (BIST) circuit for 50Hz low noise amplifier (LNA). The BIST circuit is designed for system-on-chip (SoC) transceiver environment. The proposed BIST circuit measures the LNA specifications such as input impedance, voltage gaih, noise figure, and input return loss all in a single SoC environment.

Influence of Dietary Linolenic Acid/linoleic Acid Ratio on Brain Lipid Composition and Acetylcholinestease Activity in Different Aged Rats (Linolenic acid/linoleic acid 비율이 다른 식이가 연령이 다른 흰쥐의 뇌구조지방 조성과 Acetylcholinesterase 활성에 미치는 영향)

  • 윤군애
    • Journal of Nutrition and Health
    • /
    • v.28 no.8
    • /
    • pp.706-716
    • /
    • 1995
  • This study was undertaken to investigate the influence of age and dietary linolenic acid content and the linolenic acid/linoleic acid (LAN/LA) ratio on the brain lipid composition and membrane-bound enzyme, acetylcholinesterase(AchE) activities. AchE was selected as a test case for the relationship between cell lipid composition and cell membrane function. The male rats were fed diets with 0.2, 0.4, 0.6 of LNA/LA ratio within 8% LNA(H-LNA) or 4% LNA(L-LAN) of total fatty acid content for different feeding period(1, 4, 12 month). The fats used s source were sesame oil, perilla oil, soybean oil and beef tallow. The AchE activity of brain crude synaptosomal fraction was reduced with advancing age, showing 20-30% reduction in 12M compared with 1 M, and the P/C ratio was reduced in old rats. In 1 and 4 monthed rats, AchE activites was higher in H-LAN-0.2 and L-LNA-0.2 and 0.4 group. In accordance with rising of AchE activities was higher in H-LNA-0.2 and L-LNA-0.2 and 0.4 group. In accordance with rising of AchE activities, the PC/PE ratio increasedin those groups. Paricularly in L-LNA, the PC/PE ratio increased as the AchE activites for decline of membrane fluidity with increasing cholesterol and decreasing P/C ratio when rats were old. Also, AchE activity increaed with increasing PC/PE ratio which depended on the dietary LNA/LA ratio within each LNA content. Therefore, it is concluded that the lipid composition of cell membrane influenced the AchE activiteis, which was mediated by aging and the modification of dietary LNA/LA ratio.

  • PDF

Testable Design of RF-ICs using BIST Technique (BIST 기법을 이용한 RF 집적회로의 테스트용이화 설계)

  • Kim, Yong;Lee, Jae-Min
    • Journal of Digital Contents Society
    • /
    • v.13 no.4
    • /
    • pp.491-500
    • /
    • 2012
  • In this paper, a new loopback BIST structure which is effective to test RF transceiver chip and LNA(Low Noise Amplifier) in the chip is presented. Because the presented BIST structure uses a baseband processor in the chip as a tester while the system is under testing mode, the developed test technique has an advantage of performing test application and test evaluation in effectiveness. The presented BIST structure can change high frequency test output signals to a low frequency signals which can make the CUT(circuits under test) tested easily. By using this technique, the necessity of RF test equipment can be mostly reduced. The test time and test cost of RF circuits can be cut down by using proposed BIST structure, and finally the total chip manufacturing costs can be reduced.

Radio Frequency Interference on the GNSS Receiver due to S-band Signals (S 대역 신호에 의한 위성항법수신기의 RF 신호간섭)

  • Kwon, Byung-Moon;Shin, Yong-Sul;Ma, Keun-Su;Ju, Jeong-Gab;Ji, Ki-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.388-396
    • /
    • 2019
  • This paper describes the RF(Radio Frequency) interference on the GNSS receiver due to the S-band signals transmitted from the transmitters in the Test Launch Vehicle, and analyzes the cause of the RF interference. Due to the S-band signals that have relatively high power levels compared with GNSS signals, an LNA(Low Noise Amplifier) in the active GNSS antenna was saturated, and the intermodulation signal within GNSS in-bands was produced in the LNA whenever two S-band signals were received from the GNSS antenna. For these reasons, the C/N0 of the satellite signals in the GNSS receiver was attenuated severely. The design of the LNA was changed in order to protect the RF interference due to the S-band signals and the suppression capability of the RF interference was confirmed in the new LNA through the comparison of the old LNA.