• 제목/요약/키워드: Test compression

검색결과 2,697건 처리시간 0.038초

SoC 테스트를 위한 테스트 데이터 압축 (Test Data Compression for SoC Testing)

  • 김윤홍
    • 한국산학기술학회논문지
    • /
    • 제5권6호
    • /
    • pp.515-520
    • /
    • 2004
  • 코아(core) 기반의 SoC(System-on-Chip) 설계는 테스트에 관련된 많은 어려운 문제를 일으키고 있다. 그 중에서 방대한 분량의 테스트 데이터와 긴 테스트 패턴 인가시간은 SoC 테스트에서의 2가지 주요 문제로 떠오르고 있다. 많은 양의 테스트 데이터에 대한 저장공간과 인가시간을 줄이기 위한 방안으로서 테스트 벡터들의 반복되는 성질을 이용하여 최대한 효율적으로 압축하는 다양한 방법들이 제시되었다. 본 논문에서는 SoC 테스트를 위한 효율적인 테스트 데이터 압축 방법을 제안한다. 제안된 방법은 테스트 벡터 집합을 분할하고 최대한 반복되는 공통부분을 제거함으로써 테스트 데이터를 압축한다. 이 압축방법은 O(n2)의 시간복잡도를 가지며, 간단한 디코딩 하드웨어를 사용한다. 여기서 n은 테스트 벡터 수이다. 제안된 압축방법은 빠르고 쉬운 디코딩을 함께 사용하여 기존의 복잡한 소프트웨어 방식의 압축방법에 견줄만한 수준의 효율성을 보여준다.

  • PDF

SMC 압축성형재의 기계적 물성 및 특성에 관한 연구 (A Study on Material Characterization and Mechanical Properties of SMC Compression Molding Parts)

  • 김기택;임용택
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2396-2403
    • /
    • 1994
  • An experimental study on material characterization and mechanical properties of SMC(Sheet Molding Compounds) compression method parts was carried out. Simple compression test using grease oil as a lubricant was carried out to characterize flow stress of SMC at elevated temperatures. Two different mold temperatures, $130^{\circ}C{\;}and{\;}150^{\circ}C$ and two different mold speeds, 15, 45 mm/min were used for preparing the specimen of SMC compression molded parts. Surface roughness, tensile, and 3-point bending tests were used to determine the effects of molding temperatures and speeds on mechanical properties of compression molded SMC parts. Orientation and distribution of glass fiber in the compression molded SMC parts were also investigated by photographing the burnt flat specimen and taking SEM(Scanning Electron Microscope) of cross-sectional T-specimen.

Test study of precast SRC column under combined compression and shear loading

  • Chen, Yang;Zhu, Lanqi;Yang, Yong
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.265-275
    • /
    • 2022
  • A new type of precast steel reinforced concrete (PSRC) column was put forward in this paper. In order to study the static performance of PSRC column and hollow precast steel reinforced concrete (HPSRC) column subjected to combined compression and shear loading, a parametric test was carried out and effects of axial compression ratio, concrete strength and shear ratio on the mechanical behavior of composite PSRC column and HPSRC column were explored. In addition, the cracks development, load-span displacement relationship, strain distribution and shear bearing strength of column specimens were emphatically focused. Test results implied that shear failure of all specimens occurred during the test, and higher strength of cast-in-place concrete, smaller shear ratio and larger axial compression ratio could lead to greater shear resistance, but when the axial compression ratio was larger than 0.36, the shear capacity began to decrease gradually. Furthermore, truss-arch model for determining the shear strength of PSRC column and HPSRC column was proposed and the calculated results obtained from proposed method were verified to be valid.

고액공존재료의 변형거동에서 재료의 크기가 액상편석에 미치는 영향 (The Effect of Test Peace Size on Liquid Segregation in deformation Behavior in Mushy state Material)

  • 윤성원;서판기;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.167-170
    • /
    • 1997
  • For the optimal net shape forging of semi-solid materials (SSM), it is important to predict the deformation for variation of strain rate. It should be necessruy to conduct a formation of stress-strain curve in semi-solid alloys for analysis of the thixoforming process. Particularly, important problem to application of computer aided engineering in SSM processing is to prevent a segregation of liquid component during compression process. The liquid segregation is studied as multistage change of the strain rate and test piece size to prevent the liquid segregation during the compression process. The compression test for semi-solid aluminium alloy with a controlled solid fraction is performed by dynamic material test system with a furnace. Moreover morphology of structure and fraction of pore are investigated through compression test.

  • PDF

고강도 콘크리트의 일축 및 이축 압축하의 파괴거동 (Failure Behavior of High Strength Concrete under Uniaxial and Biaxial Compression)

  • 이상근;송영철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.223-231
    • /
    • 2002
  • The pilot tests for the development of biaxial failure envelope of high strength concrete of reactor containments were performed. To apply biaxial loads to concrete, the plate specimens were used. The technical difficulties encountered on the development of a suitable biaxial test setup were discussed. To decide the optimum thickness of plate specimen, the nonlinear finite element analyses using ABAQUS were performed for a 1/8 model of cylindrical specimen(${\Phi}150{\times}300$) and four 1/4 models of plate Specimens ($200{\times}200{\times}T$(=30, 50, 60, 70)mm) under uniaxial compression. Analytical values and test data of relative strength ratio between those specimens with different geometric shapes were also compared. The various test data were obtained under uniaxial compression, uniaxial tension, and biaxial compression and then the stress-strain responses were plotted. The test data indicated that the strength of concrete under biaxial compression, $f_1/f_2=-1/-1$, is 15 percent larger than that under uniaxial compression and the poisson's ratio of concrete is 0.16. Teflon pads employed to eliminate friction between test specimen and loading platens showed an excellent effect under biaxial compression.

SOC Test Compression Scheme Sharing Free Variables in Embedded Deterministic Test Environment

  • Wang, Weizheng;Cai, Shuo;Xiang, Lingyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권3호
    • /
    • pp.397-403
    • /
    • 2015
  • This paper presents a new SOC test compression scheme in Embedded Deterministic Test (EDT) compression environment. Compressed test data is brought over the TAM from the tester to the cores in SOC and decompressed in the cores. The proposed scheme allows cores tested at the same time to share some test channels. By sharing free variables in these channels across test cubes of different cores decompressed at the same time, high encoding efficiency is achieved. Moreover, no excess control data is required in this scheme. The ability to reuse excess free variables eliminates the need for high precision in matching the number of test channels with the number of care bits for every core. Experimental results obtained for some SOC designs illustrate effectiveness of the proposed test application scheme.

SMC 압축성형재의 기계적 물성 및 특성에 관한 연구 (A Study on Material Charaterization and Mechanical Properties of SMC Compression Molding Parts)

  • 김기택;정진호;임용택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.139-148
    • /
    • 1994
  • An experimental study on material characterization and mechanical properties of SMC(Sheet Molding Compounds) compression molding parts was carried out. Simple compression test using grease oil as a lubricant was carried out to characterize flow stress of SMC at elevated temperatures. Two different mold temperatures, 130$^{\circ}C$ and 150$^{\circ}C$ and two different mold speeds, 15, 45mm/min were used for preparing the specimen of SMC compression molding parts. Surface roughness, tensile, and 3-point bending tests were used to determine the effects of molding temperatures and speeds on mechanical properties of compression molded SMC parts.

  • PDF

흙-벤토나이트 혼합물의 지반공학적 특성 (Geotechnical Properties of Soil-Bentonite Mixtures)

  • 채교익;권무남
    • 한국농공학회지
    • /
    • 제43권5호
    • /
    • pp.132-144
    • /
    • 2001
  • Iln order to figure out criteria of bentonite for using as impervious material of waste landfill, laboratory experiments were performed to reveal the geotechnical properties of soil-bentonite mixtures such as compaction test, direct shear test, unconfined compression test, triaxial compression test, consolidation test and permeability test. The results of the study are summarized as follows ; 1. Based on the compaction test, optimum moisture content increased with the increase of bentonite content, but maximum dry density decreased. 2. In unconfined compression test, the maximum strength of the soil-bentonite mixtures appeared at 10% bentonite content. The correlation equation between stress($\sigma$) and strain($\varepsilon$) of the soil-bentonite mixtures is given by ; $\sigma=\frac{a\cdot\varepsilon}{\varepsilon^n+b}$ 3. In shear test of the mixtures. the shear strength showed an increasing trend with increase of bentonite content and the maximum shear strength appeared at 10% bentonite content. 4. In consolidation test, the coefficient of compressibility $(a_v)$$(m_v)$$(C_v)$

  • PDF

PMMA 나노 기둥의 압축시험에 대한 분자동역학 해석 (Molecular Dynamics Simulation for Compression Test of PMMA Nano Pillars)

  • 김정엽;김재현;최병익
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.502-505
    • /
    • 2007
  • PMMA has been extensively adopted in Nano Imprint Lithography(NIL). PMMA nano-structures experience severe mechanical load and deformation during NIL process, and understanding its mechanical behavior is very important in designing and optimizing NIL process. One of the most promising techniques for characterizing the mechanical behavior of nano structures is nano pillar compression test. In this study, the mechanical behaviors of PMMA pillars during compression test are analyzed using Molecular Dynamics. Two methods for simulation of PMMA nano pillars are proposed. The stress-strain relationship of nano-scale PMMA structure is obtained based on CVFF(Covalent Valence Force Fields) potential and the dependency of the applied strain rate on the stress-strain relationship is analyzed. The obtained stress-strain relationships can be useful in simulating nano-scale PMMA structures using Finite Element Method(FEM) and understanding the experimental results obtained by compression test of PMMA nano pillars.

  • PDF

CSG 재료의 강도특성에 관한 연구 (Strength Characteristics of CSG material)

  • 박한규;김기영;조성은;전제성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.619-626
    • /
    • 2005
  • This work aims at studing the stress-strain-strength behavior of an CSG(cemented sand and gravel) materials. An analysis of the mechanical behavior of the CSG is performed from the interpretation of results by unconfined compression test, large triaxial compression test in which the influence of both the degree of cementation and age. For CSG, It was concluded that the characterristics of compression are direct measurment of the degree of cementation and age. In addition, hyperbolic model is adopted to express the relation between elastic moduli and cementation, age, confined stress in small strain. The results of the test show that clear correlation with each other

  • PDF