• Title/Summary/Keyword: Test Furnace

Search Result 762, Processing Time 0.091 seconds

Evaluation of Structural Performance of RC Beams retrofitted PVA Fiber to the Change of Replacement Ratio of Recycled Fine Aggregates and Blast Furnace Slag (고로슬래그 미분말 및 순환잔골재를 적용한 PVA섬유 보강 철근콘크리트 보의 구조성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.8
    • /
    • pp.3-11
    • /
    • 2018
  • In this study, total nine R/C beams, designed by the PVA Fiber with ground granulated blast furnace slag and recycled fine aggregate were constructed and tested under monotonic loading. In the material development, micromechanics was adopted to properly select the optimized range of the composite based on steady-state cracking theory and experimental studies on the matrix and interracial properties. Experimental programs were carried out to improve and evaluate the structural performance of the test specimens: the load-displacement, the failure mode, the maximum strength, and ductility capacity were assessed. Test results showed that test specimens (BSPR-20, 40) was increased the maximum load carrying capacity by 3~6% and the ductility capacity by 9~14% in comparison with the standard specimen (BSS). And the specimens (BSPR-60, 80, 100) was decreased the maximum load carrying capacity by 0~4% and the ductility capacity by 79% in comparison with the standard specimen (BSS) respectively.

Rapid Evaluation Method for Blast Furnace Slag Fineness and Influence of Fineness on Properties of Cement Mortar (고로슬래그의 분말도 신속평가 및 분말도가 시멘트 모르타르의 특성에 미치는 영향)

  • Han, Cheon-Goo;Joo, Eun-Hee
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.5
    • /
    • pp.13-18
    • /
    • 2018
  • In this research, regarding the type three blast furnace slag (BS) regulated by KS F 2563 and supplied to actual ready mixed concrete plant, the fineness on specification and actually measured fineness by Blain test were compared, and by applying the hydrometer method used for early prediction of concrete strength, the feasibility of the hydrometer method for acquisition inspection of BS was analyzed. Additionally, the influence of various fineness of BS on properties of cement mortar was also assessed. According to the experimental results of this research, correlation of fineness values between specification and actually measured data were not matched. In the case of the rapid evaluation method using hydrometer, a good relation was shown between the fineness data obtained from hydrometer and Blain test. furthermore, from the cement mortar properties test, there was a good relation was obtained between fineness data from rapid evaluation method by hydrometer and cement mortar properties, while there was no clear relation between fineness data from specification and cement mortar properties. Hence, as a qulity controlling method of BS fineness, a rapid evaluation method using hydrometer is suggested as a new method.

The basic study for the proposal standard of Nano-Slag on an alternation material for Silica-fume (실리카퓸 대체 재료로서 나노슬래그의 규격제안을 위한 기초적 연구)

  • Heo, Jae-Won;Im, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.67-71
    • /
    • 2008
  • Blast Furnace slag a pigiron waste that is produced more than 800 thousand tons per year, and micronized double quenching blast furnace slag improves flexibility of concrete, and even shows improvement effect of long-term intensity. However, the concrete that used micronized double quenching blast furnace slag is restricted in its use because of many problems to assure early intensity. Even micronized blast furnace slag can assure its early intensity of concrete when maximizing, and is considered that can be applied in high strength of blast furnace slag as an alternation material for Silica-fume that depends on overall import. Hereby this paper is revised activity index and fluidity of mortar that used Nano Slag that is produced by rotten Nano crush equipment to propose its size, and possible utility of Nano Slag that was produced by blast furnace slag made in Korea as an alternation material, with the conclusion as following. 1. To measure micronized Nano slag, it is judged that it should be in progress with BET method that is based on micronized Silica-fume for concrete. 2. As a result, the test based on KS L ISO 679 is shown to satisfy the basic additive size of KS F 2563 and of KS F 2567, and to determine new combination of stipulations. 3. The strength development of Nano Slag was shown excellent in the daily initial installment of 1, 3, 7 days against the basic additive. This is judged that contains CaO controlling initial strength against Silica-fume, and contributes to higher fineness than the basic blast furnace slag 1 type.

  • PDF

Analysis of Furnace Conditions with Waste Plastics Injection into Blast Furnace (폐플라스틱의 吹入에 따른 高爐 爐況解析)

  • 허남환;백찬영;임창희
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.23-30
    • /
    • 2000
  • Since most of the waste plastics are incinerated and landfilled for the plastic treatment, the environmental friendly processes must be introduced. The plastic utilization of plastic to the blast furnace as a substitutional fuel was developed as a useful recycling method of waste plastics, and commercialized in several ironmaking company in Europe and Japan. Present study was carried out to understand the effect of plastic injection on blast furnace process continuously by using the foundry blast furnace in POSCO. The coke replacement ratio turned out to be 0.98 with the waste plastic injection up to 13.8 kg/thm of injection rate, and there were no significant effect of the kinds of injection plastics on the replacement ratio in this test operation. The permeability in the furnace became worse and the heat load in the lower part of blast furnace was increased with increasing the injection rate of waste plastics. As the rate of plastic injection were increased, the top gas utilization and shaft efficiency were also decreased from the Rist diagram analysis.

  • PDF

An Experimental Study on the Salt Damage Resistance of High Durable Concrete (고내구성콘크리트의 염해저항성에 관한 실험적 연구)

  • Yoon, Jai-Hwan;Jaung, Jae-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.73-81
    • /
    • 2003
  • In this paper, salt damage resistance of high durable concrete was tested. High durable concrete was made by using low water cement ratio, chemical admixture called super-durable admixture and mineral admixtures such as fly-ash, ground granulated blast-furnace slag, silica fume. Two kinds of salt damage resistance test were carried out. One method is chloride ion penetration test(ASTM C1202), and the other one is depth of chloride penetration test in saline solution. Test results were as followers: 1) The depth of chloride ion penetration increased exponentially as water cement ratio was increased and time passed. 2) Super-durable admixture had little effect on the improvement of salt damage resistance of concrete. 3) Silica fume and ground granulated blast-furnace slag were effective on salt damage resistance because of pozzolanic reaction, but fly-ash had a little effect.

Experimental Study on Shear Performance of RC Beams with Electric Arc Furnace Oxidizing Slag Aggregates (전기로 산화슬래그 골재를 사용한 RC 보의 전단 성능에 관한 실험적 연구)

  • Lee, Yong Jun;Jeong, Chan Yu;Lee, Bum Sik;Kim, Sang Woo;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.40-48
    • /
    • 2012
  • This study evaluates the shear performance of reinforced concrete beams with electric arc furnace oxidizing slag aggregates generated from iron manufacture. A total of six simple supported specimens were cast and tested in shear. The main test variables were the type of aggregates and the amount of shear reinforcements. The specimens under four point loading had a shear span-to-depth ratio of 2.5 and a rectangular section with a width of 200mm and an effective depth of 300mm. Existing equations to predict the shear strength of the specimens were used in this study. Furthermore, a finite element analysis using shear analytical model was performed to trace the shear behavior of the specimens with electric arc furnace oxidizing aggregates. From the test results, the shear performance of specimens with electric arc furnace oxidizing aggregates is similar to that of specimens with natural aggregates.

Basic Properties of Concrete with Ultrafine-Blaine Air Cooling Slag as Admixture (초미분말 서냉 슬래그를 혼화재로 사용한 콘크리트의 기초적 특성)

  • Heo, Jae-Hyuk;Jeong, Sung-Wook;Her, Jae-Won;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • In this study, a test has been carried out to solve the problem with ground granulated blast-furnace slag, low early strength & lack of supply and to find out a way to use as concrete admixture of the ultrafine blaine air cooling slag which is all disposed as the by product of air cooling slag and its test was conducted to the replacement rate of ultrafine blaine air cooling slag & mixing condition of every concrete admixtures by type for the purpose of obtaining later a basic data for practical use of the cement that used ultrafine blaine air cooling slag by conducting comparative analysis. If ultrafine-blaine air cooling slag is used to the concrete following the results, a high efficiency water reducing agent won't be needed much for flow acquisition due to a high increase in flow, and the stripping time of concrete form will be shortened thanks to the acquisition of early strength, And though, it has the problems with long term strength which is similar or a little lower than the 3 types of ground granulated blast-furnace slag, it's still applicable as the substitute materials for 3 types of ground granulated blast-furnace slag at 10, 15% replacement rate of ultrafine-blaine air cooling slag, at which it shows higher activation index than 3 types of ground granulated blast-furnace slag.

The Comparative Analysis of Numerical and Experimental Results for Prediction of Workpiece Temperature in the Commercial Reheating Furnace (상용급 재가열로에서 소재 온도 예측을 위한 해석과 실험 결과의 비교 분석)

  • Lee, Chunsik;Lee, Jae Yong;Ryu, BoHyun;Rhim, DongRyul
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.74-79
    • /
    • 2019
  • Specially designed test material was used for workpiece temperature measurement in the commercial reheating furnace and a linearized thermal model was applied for real time temperature prediction. The applied furnace is a walking beam type and specification of the workpiece is a STS302 which is 160mm in width, 160mm in height and 8100mm in length. Also six thermocouples were installed in width, height and length direction for temperature measurement. Ambient temperature in the furnace was raised to 1265 Celsius degrees and it took about 2.5 hours from loading to discharging of the workpiece. As a result of the experiment, temperature of the workpiece at discharge was 1257 Celsius degrees on the average in the range of 1256 to 1259 Celsius degrees, and predicted average temperature through the thermal model was 1251 Celsius degrees. Therefore, the deviation of the analysis and test results is about 6 degrees, which is within the range of 10 degrees required by the industry.

Removal Efficiency of Heavy Metals and Nutrients by Zeolite and Basic Oxygen Furnace Slag (제올라이트와 제강슬래그에 의한 중금속과 영양염류 복합오염물질의 제거 효과)

  • Kim, Yongwoo;Oh, Myounghak;Park, Junboum;Kwon, Osoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.13-19
    • /
    • 2014
  • Permeable reactive barrier has been recognized as the one of representative methods for remediation of contaminated groundwater. Reactive barrier system containing two and more reactive materials can remove multiple contaminants such as nutritive salts and heavy metals. In this study, removal efficiency of multiple contaminants was evaluated when both zeolite and basic oxygen furnace slag were used as reactive materials. Sequential batch test which consists of two materials was performed to evaluate removal efficiency comparing the reaction order of them against nutritive slats including ammonium and phosphate and heavy metal including cadmium. As a result, zeolite-basic oxygen furnace slag sequence batch test showed the best efficiency for removal of multiple contaminants including nutritive salts and heavy metal.

Effect of Mineral Admixture on Bond between Structural Synthetic Fiber and Latex Modified Cement Mortar under Sulfate Environments (황산염에 노출된 구조용 합성섬유와 라텍스 개질 시멘트 모르타르의 부착특성에 미치는 광물질 혼화재의 효과)

  • Kim, Dong-Hyun;Lee, Jung-Woo;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.25-34
    • /
    • 2012
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to cement mortar by forming expansive hydration products due to the reaction between cement hydration products and acid and sulfate ions. In this study, the effect of fly ash and blast furnace slag on the bond performances of structural synthetic fiber in latex modified cement mortar under sulfate environments. Fly ash and blast furnace slag contents ranging from 0 % to 20 % are used in the mix proportions. The latex modified cement mortar specimens were immersed in fresh water, 8 % sodium sulfate ($Na_2SO_4$) solutions for 28 and 50 days, respectively. Pullout tests are conducted to measure the bond performance of structural synthetic fiber from latex modified cement mortar after sulfate environments exposure. Test results are found that the incorporation of fly ash and blast furnace slag can effectively enhance the PVA fiber-latex modified cement mortar interfacial bond properties (bond behavior, bond strength and interface toughness) after sulfate environments exposure. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results under sulfate environments.