• Title/Summary/Keyword: Terrestrial Measurements

Search Result 73, Processing Time 0.024 seconds

A Study on Simultaneous Adjustment of GNSS Baseline Vectors and Terrestrial Measurements

  • Nguyen, Dinh Huy;Lee, Hungkyu;Yun, Seonghyeon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.415-423
    • /
    • 2020
  • GNSS (Global Navigation Satellite System) is mostly used for high-precise surveys due to its accuracy and efficiency. But this technique does not always fulfill the demanding accuracy in harsh operational environments such as urban canyon and forest. One of the remedies for overcoming this barrier is to compose a heterogeneous surveying network by adopting terrestrial measurements (i.e., distances and angles). Hence, this study dealt with the adjustment of heterogeneous surveying networks consisted of GNSS baseline vectors, distances, horizontal and vertical angles with a view to enhancing their accuracy and so as to derive an appropriate scheme of the measurement combination. Reviewing some technical issues of the network adjustments, the simulation, and experimental studies have been carried out, showing that the inclusion of the terrestrial measurements in the GNSS standalone overall increased the accuracy of the adjusted coordinates. Especially, if the distances, the horizontal angles, or both of them were simultaneously adjusted with GNSS baselines, the accuracy of the GNSS horizontal component was improved. Comparing the inclusion of the horizontal angles with those of the distances, the former has been more influential on accuracy than the latter even though the same number of measurements were employed in the network. On the other hand, results of the GNSS network adjustment together with the vertical angles demonstrated the enhancement of the vertical accuracy. As conclusion, this paper proposes a simultaneous adjustment of GNSS baselines and the terrestrial measurements for an effective scheme that overcomes the limitation of GNSS control surveys.

Terrestrial LiDAR Measurements and Analysis of Topographical Changes on Malipo Beach (지상 LiDAR를 이용한 만리포 해변 정밀 지형측량 및 지형 변화 분석)

  • Shim, Jae-Seol;Kim, Jin-Ah;Park, Han-San;Kim, Seon-Jeong
    • Ocean and Polar Research
    • /
    • v.32 no.1
    • /
    • pp.73-84
    • /
    • 2010
  • A terrestrial LiDAR was used to acquire precise and high-resolution topographical information of Malipo beach, Korea. Terrestrial LiDAR and RTK-DGPS (VRS) were mounted on top of a survey vehicle and used to scan 20 times stop-and-go method with 250 m spacing intervals at ebb tides. In total, 7 measurements were made periodically from 2008 to 2009 and after each beach replenishment event. We carried out GIS-based 3D spatial analysis such as slope and volume calculations in order to assess topographical changes over time. In relation to beach replenishment, comparative analysis of each volume change revealed them to be similar. This result indicates that the terrestrial LiDAR measurements are accurate and can be used to analyze temporal topographical changes. In conclusion, the methodology employed in this study can be used efficiently to exercise coastal management through monitoring and analyzing beach process such as erosion and deposition.

MEASUREMENT OF LINE PROFILE STEEPNESS AS A POSSIBLE TOOL FOR DEDUCING A TOTAL MAGNETIC FLUX NEAR A NEUTRAL LINE

  • GRIGORYEV V. M.;KOBANOV N. I.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.233-234
    • /
    • 1996
  • For obtaining estimates of a total magnetic flux, we propose to use measurements of ${\partial}I/{\partial}{\lambda}$. obtained by a modulation method which is formally identical to Stokes V-parameter measurements. In this case the polarization is not analyzed. It is advisable to use in measurements two parts of the spectral line wing.

  • PDF

Response of the Terrestrial Carbon Exchange to the Climate Variability (기후변동성에 따른 육상 탄소 순환의 반응)

  • Sun, Minah;Cho, Chun-Ho;Kim, Youngmi;Lee, Johan;Boo, Kyoung-On;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.163-175
    • /
    • 2017
  • The global terrestrial ecosystems have shown a large spatial variability in recent decades and represented a carbon sink pattern at mid-to-high latitude in Northern Hemisphere. However, there are many uncertainties in magnitude and spatial distribution of terrestrial carbon fluxes due to the effect of climate factors. So, it needs to accurately understand the spatio-temporal variations on carbon exchange flux with climate. This study focused on the effects of climate factors, .i.e. temperature, precipitation, and solar radiation, to terrestrial biosphere carbon flux. We used the terrestrial carbon flux that is simulated by a CarbonTracker, which performs data assimilation of global atmospheric $CO_2$ mole fraction measurements. We demonstrated significant interactions between Net Ecosystem Production (NEP) and climate factors by using the partial correlation analysis. NEP showed positive correlation with temperature at mid-to-high latitude in Northern Hemisphere but showed negative correlation pattern at $0-30^{\circ}N$. Also, NEP represented mostly negative correlation with precipitation at $60^{\circ}S-30^{\circ}N$. Solar radiation affected NEP positively at all latitudes and percentage of positive correlation at tropical regions was relatively lower than other latitudes. Spring and summer warming had potentially positive effect on NEP in Northern Hemisphere. On the other hand as increasing the temperature in autumn, NEP was largely reduced in most northern terrestrial ecosystems. The NEP variability that depends on climate factors also differently represented with the type of vegetation. Especially in crop regions, land carbon sinks had positive correlation with temperature but showed negative correlation with precipitation.

Full spectrum estimation of helicopter background and cosmic gamma-ray contribution for airborne measurements

  • Lukas Kotik;Marcel Ohera
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1052-1060
    • /
    • 2023
  • The airborne radiation monitoring has been used in geophysics for more than forty years and now it also has its important role in emergency monitoring. The aircraft background and the cosmic gamma-rays contribute to the measured gamma spectrum on the aircraft board. This adverse effect should be eliminated before the data processing. The paper describes two semiparametric methods to estimate the full spectrum aircraft background and cosmic gamma-ray contribution from spectra measured at altitudes where terrestrial contribution is negligible. The methods only assume to know possible peak positions in spectra and their full width at half maximum, that can be easily obtained e.g. from terrestrial measurement. The methods were applied to real experimental data acquired on Mi-17 and Bell 412 helicopter boards. The IRIS airborne gamma-ray spectrometer, with 4×4 L NaI(Tl) crystals, produced by Pico Envirotec Inc., Canada, was used on helicopters' boards. To obtain valid estimate of the aircraft background and the cosmic contribution, the measurements over sea and large water areas were carried out. However, the satisfactory results over inland were also achieved comparing with those acquired over large water areas.

Monitoring Landcreep Using Terrestrial LiDAR and UAVs (지상라이다와 드론을 이용한 땅밀림 모니터링 연구)

  • Jong-Tae Kim;Jung-Hyun Kim;Chang-Hun Lee;Seong-Cheol Park;Chang-Ju Lee;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.27-37
    • /
    • 2023
  • Assessing landcreep requires long-term monitoring, because cracks and steps develop over long periods. However, long-term monitoring using wire extensometers and inclinometers is inefficient in terms of cost and management. Therefore, this study selected an area with active landcreep and evaluated the feasibility of monitoring it using imagesing from terrestrial LiDAR and drones. The results were compared with minute-by-minute data measured in the field using a wire extensometer. The comparison identified subtle differences in the accuracy of the two sets of results, but monitoring using terrestrial LiDAR and drones did generate values similar to the wire extensometer. This demonstrates the potential of basic monitoring using terrestrial LiDAR and drones, although minute-byminute field measurements are required for analyzing and predicting landcreep. In the future, precise monitoring using images will be feasible after verifying image analysis at various levels and accumulating data considering climate and accuracy.

3 Dimensional Modelling of a Old Architecture Using a Terrrestrial Laser Scanner (지상 레이저스캐너를 이용한 고건축물의 3차원 모델링)

  • Lee, Jin-duk;Do, Chul-ho;Han, Seung-hee
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.30-34
    • /
    • 2007
  • Surveyors has desired eagerly surveying technology and equipments which are able to acquire a lot of data easily, quickly and precisely. Laser has the merits that is able to obtain a large number of measurements with high precision in a short time and one of concrete realizations is a terrestrial laser scanner called Terrestrial LiDAR. This paper describes 3D modelling of a old architecture which was conducted using a Z-F laser system and the result of positioning analysis. Use of terrestrial laser scanner is much more efficient than existing photogrammetry in measuring and database constructing for preservation and restoration of cultural assets as well as for deformation monitoring and safety diagnosis of structures.

  • PDF

Low Latitude Plasma Blobs: A Review

  • Kim, Vitaly P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • In recent years, there has been renewed activity in the study of local plasma density enhancements in the low latitude F region ionosphere (low latitude plasma blobs). Satellite, all-sky airglow imager, and radar measurements have identified the characteristics of these blobs, and their coupling to Equatorial Plasma Bubbles (EPBs). New information related to blobs has also been obtained from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite. In this paper, we briefly review experimental, theoretical and modeling studies related to low latitude plasma blobs.

LiDAR-based Mapping Considering Laser Reflectivity in Indoor Environments (실내 환경에서의 레이저 반사도를 고려한 라이다 기반 지도 작성)

  • Roun Lee;Jeonghong Park;Seonghun Hong
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.135-142
    • /
    • 2023
  • Light detection and ranging (LiDAR) sensors have been most widely used in terrestrial robotic applications because they can provide dense and precise measurements of the surrounding environments. However, the reliability of LiDAR measurements can considerably vary due to the different reflectivities of laser beams to the reflecting surface materials. This study presents a robust LiDAR-based mapping method for the varying laser reflectivities in indoor environments using the framework of simultaneous localization and mapping (SLAM). The proposed method can minimize the performance degradations in the SLAM accuracy by checking and discarding potentially unreliable LiDAR measurements in the SLAM front-end process. The gaps in point-cloud maps created by the proposed approach are filled by a Gaussian process regression method. Experimental results with a mobile robot platform in an indoor environment are presented to validate the effectiveness of the proposed methodology.