DOI QR코드

DOI QR Code

Full spectrum estimation of helicopter background and cosmic gamma-ray contribution for airborne measurements

  • Lukas Kotik (National Radiation Protection Institute (SURO)) ;
  • Marcel Ohera (National Radiation Protection Institute (SURO))
  • Received : 2022.07.20
  • Accepted : 2022.11.28
  • Published : 2023.03.25

Abstract

The airborne radiation monitoring has been used in geophysics for more than forty years and now it also has its important role in emergency monitoring. The aircraft background and the cosmic gamma-rays contribute to the measured gamma spectrum on the aircraft board. This adverse effect should be eliminated before the data processing. The paper describes two semiparametric methods to estimate the full spectrum aircraft background and cosmic gamma-ray contribution from spectra measured at altitudes where terrestrial contribution is negligible. The methods only assume to know possible peak positions in spectra and their full width at half maximum, that can be easily obtained e.g. from terrestrial measurement. The methods were applied to real experimental data acquired on Mi-17 and Bell 412 helicopter boards. The IRIS airborne gamma-ray spectrometer, with 4×4 L NaI(Tl) crystals, produced by Pico Envirotec Inc., Canada, was used on helicopters' boards. To obtain valid estimate of the aircraft background and the cosmic contribution, the measurements over sea and large water areas were carried out. However, the satisfactory results over inland were also achieved comparing with those acquired over large water areas.

Keywords

Acknowledgement

This work was supported by Ministry of Interior of the Czech Republic as part of project Recovery Management Strategy for Affected Areas after Radiation Emergency, VH20172020015 and by the programme of the Ministry of the Interior of the Czech Republic MV-17196-1/OBVV-2022.

References

  1. R.L. Grasty, B.R.S. Minty, A Guide to the Technical Specifications for Airborne Gamma-Ray Surveys, Australian Geological Survey Organisation, 1995. Record 1995/60.
  2. B.R.S. Minty, A.P.J. Luyendyk, R.C. Brodie, Calibration and data processing for airborne gamma-ray spectrometry, AGSO J. Aust. Geol. Geophys. 17 (2) (1997) 51-66.
  3. B.R.S. Minty, Fundamentals of airborne gamma-ray spectrometry, AGSO J. Aust. Geol. Geophys. 17 (2) (1997) 39-50.
  4. V.V. Drovnikov, N.Y. Egorov, V.V. Kovalenko, Y.A. Serboulov, Y.A. Zadorozhny, Some results of the airborne high energy resolution gamma-spectrometry application for research of the USSR European territory radioactive contamination in 1986 caused by the Chernobyl accident, J. Environ. Radioact. 37 (2) (1997) 223-234. https://doi.org/10.1016/S0265-931X(96)00093-8
  5. B. Bucher, L. Rybach, G. Schwarzc, In-flight, online processing and mapping of airborne gamma spectrometry data, Nucl. Instrum. Methods Phys. Res. 540 (2005) 495-501. https://doi.org/10.1016/j.nima.2004.11.030
  6. J. Hulka, I. Cespirova, Z. Prouza, Modern data acquisition of the contaminated landscape cover, Radioprotection 44 (5) (2009) 619-621. https://doi.org/10.1051/radiopro/20095114
  7. J.D. Allyson, D.C.W. Sanderson, Monte Carlo simulation of environmental airborne gamma-spectrometry, J. Environ. Radioact. 38 (3) (1998) 259-282. https://doi.org/10.1016/S0265-931X(97)00040-4
  8. J.D. Allyson, D.C.W. Sanderson, Spectral deconvolution and operational use of stripping ratios in airborne radiometrics, J. Environ. Radioact. 53 (3) (2001) 351-363. https://doi.org/10.1016/S0265-931X(00)00141-7
  9. J. Kluson, Environmental monitoring and in situ gamma spectrometry, Radiat. Phys. Chem. 61 (2001) 209-216. https://doi.org/10.1016/S0969-806X(01)00242-0
  10. IAEA, Airborne Gamma-Ray Spectrometer Surveying, Technical Report Series No. 322, IAEA, 1991.
  11. IAEA, Guidelines for Radioelement Mapping Using Gamma-Ray Spectrometry Data, IAEA-TECDOC-1363, IAEA, 2003.
  12. Y. Sanada, A. Kondo, T. Sugita, Y. Nishizawa, Y. Yuuki, K. Ikeda, Y. Shoji, T. Torii, Radiation monitoring using an unmanned helicopter in the evacuation zone around the Fukushima Daiichi nuclear power plant, Explor. Geophys. 45 (1) (2014).
  13. R. Pollanen, et al., Radiation surveillance using an unmanned aerial vehicle, Appl. Radiat. Isot. 67 (2) (2009) 340-344. https://doi.org/10.1016/j.apradiso.2008.10.008
  14. P. Jurza, I. Campbell, P. Robinson, R. Wackerle R, P. Cunneen P, B. Pavlik, Use of 214Pb photopeaks for radon removal utilizing current airborne gamma-ray spectrometer technology and data processing, Explor. Geophys. 36 (2005) 322-328. https://doi.org/10.1071/EG05322
  15. M. Baldoncini, M. Alberi, C. Bottardi, B. Minty, K.G.C. Raptis, V. Strati, F. Mantovani, Exploring atmospheric radon with airborne gamma-ray spectroscopy, Atmos. Environ. 170 (2017) 259-268. https://doi.org/10.1016/j.atmosenv.2017.09.048
  16. J.O. Ramsay, Monotone regression splines in action, Stat. Sci. 3 (4) (1988) 425-441. https://doi.org/10.1214/ss/1177012761
  17. J. Hovgaard, R. Grasty, Reducing statistical noise in airborne gamma-ray data through spectral component analysis, in: A.G. GUBINS (Ed.), Proceedings of Exploration 97: Fourth Decennial Conference on Mineral Exploration, 1998, pp. 753-764.
  18. G. Butterweck, et al., International intercomparison exercise of airborne gamma-spectrometric systems of the Czech republic, France, Germany and Switzerland in the framework of the Swiss exercise ARM17, report number, 18-04, PSI Bericht Nr (2018).
  19. M. Ohera, D. Sas, P. Sladek, Calibration of spectrometric detectors for air kerma rate, Nucl. Technol. Radiat. Protect. 35 (4) (2020) 323-330. https://doi.org/10.2298/NTRP2004323O
  20. V. Franc, V. Hlavac, M. Navara, Sequential Coordinate-Wise Algorithm for the Non-negative Least Squares Problem, pp. 407-414.