DOI QR코드

DOI QR Code

Response of the Terrestrial Carbon Exchange to the Climate Variability

기후변동성에 따른 육상 탄소 순환의 반응

  • Sun, Minah (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Cho, Chun-Ho (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Youngmi (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Johan (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Boo, Kyoung-On (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Byun, Young-Hwa (Climate Research Division, National Institute of Meteorological Sciences)
  • 선민아 (국립기상과학원 기후연구과) ;
  • 조천호 (국립기상과학원 기후연구과) ;
  • 김영미 (국립기상과학원 기후연구과) ;
  • 이조한 (국립기상과학원 기후연구과) ;
  • 부경온 (국립기상과학원 기후연구과) ;
  • 변영화 (국립기상과학원 기후연구과)
  • Received : 2017.01.19
  • Accepted : 2017.06.08
  • Published : 2017.06.30

Abstract

The global terrestrial ecosystems have shown a large spatial variability in recent decades and represented a carbon sink pattern at mid-to-high latitude in Northern Hemisphere. However, there are many uncertainties in magnitude and spatial distribution of terrestrial carbon fluxes due to the effect of climate factors. So, it needs to accurately understand the spatio-temporal variations on carbon exchange flux with climate. This study focused on the effects of climate factors, .i.e. temperature, precipitation, and solar radiation, to terrestrial biosphere carbon flux. We used the terrestrial carbon flux that is simulated by a CarbonTracker, which performs data assimilation of global atmospheric $CO_2$ mole fraction measurements. We demonstrated significant interactions between Net Ecosystem Production (NEP) and climate factors by using the partial correlation analysis. NEP showed positive correlation with temperature at mid-to-high latitude in Northern Hemisphere but showed negative correlation pattern at $0-30^{\circ}N$. Also, NEP represented mostly negative correlation with precipitation at $60^{\circ}S-30^{\circ}N$. Solar radiation affected NEP positively at all latitudes and percentage of positive correlation at tropical regions was relatively lower than other latitudes. Spring and summer warming had potentially positive effect on NEP in Northern Hemisphere. On the other hand as increasing the temperature in autumn, NEP was largely reduced in most northern terrestrial ecosystems. The NEP variability that depends on climate factors also differently represented with the type of vegetation. Especially in crop regions, land carbon sinks had positive correlation with temperature but showed negative correlation with precipitation.

Keywords

References

  1. Anav, A., and Coauthors, 2013: Evaluating the land ocean components of the global carbon cycle in the CMIP5 earth system models. J. Climate, 26, 6801-6843, doi: 10.1175/JCLI-D-12-00417.1.
  2. Anderegg, W. R. L., and Coauthors, 2015: Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl. Acad. Sci. USA, 112, 15591-15596, doi:10.1073/pnas.1521479112.
  3. Ballantyne, A. P., C. B. Alden, J. B. Miller, P. P. Tans, and J. W. C. White, 2012: Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488, 70-72, doi:10.1038/nature11299.
  4. Bastos, A., S. W. Running, C. Gouveia, and R. M. Trigo, 2013: The global NPP dependence on ENSO: La Nina and the extraordinary year of 2011. J. Geophys. Res., 118, 1247-1255, doi:10.1002/jgrg.20100.
  5. Basu, S., and Coauthors, 2011: The seasonal cycle amplitude of total column $CO_2$: Factors behind the modelobservation mismatch. J. Geophys. Res., 116, D23306, doi:10.1029/2011JD016124.
  6. Beer, C., and Coauthors, 2010: Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329, 834-838, doi:10.1126/science.1184984.
  7. Bradford, M. A., and T. W. Crowther, 2013: Carbon use efficiency and storage in terrestrial ecosystems. New Phytol., 199, 7-9, doi:10.1111/nph.12334.
  8. Bradford, M. A., A. D. Keiser, C. A. Davies, C. A. Mersmann, and M. S. Strickland, 2013: Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry, 113, 271-281, doi:10.1007/s10533-012-9822-0.
  9. Chapin III, F. S., and Coauthors, 2005: Role of land-surface changes in arctic summer warming. Science, 310, 657, doi:10.1126/science.1117368.
  10. Churkina, G., and S. W. Running, 1998: Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems, 1, 206-215. https://doi.org/10.1007/s100219900016
  11. Cleveland, C. C., S. C. Reed, and A. R. Townsend, 2006: Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology, 87, 492-503. https://doi.org/10.1890/05-0525
  12. Cleveland, C. C., W. R. Wieder, S. C. Reed, and A. R. Townsend, 2010: Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecology, 91, 2313-2323, doi:10.1890/09-1582.1.
  13. Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. https://doi.org/10.1038/35041539
  14. Deng, F., and J. M. Chen, 2011: Recent global $CO_2$ flux inferred from atmospheric $CO_2$ observations and its regional analyses. Biogeosci., 8, 3263-3281, doi:10.5194/bg-8-3263-2011.
  15. Fitzhugh, R. D., C. T. Driscoll, P. M. Groffman, G. L. Tierney, T. J. Fahey, and J. P. Hardy, 2001: Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry, 56, 215-238, doi:10.1023/A:1013076609950.
  16. Friedlingstein, P., and I. Prentice, 2010: Carbon-climate feedbacks: A review of model and observation based estimates. Curr. Opin. Environ. Sustainability, 2, 251-257, doi:10.1016/j.cosust.2010.06.002.
  17. Gurney, K. R., and Coauthors, 2002: Towards robust regional estimates of $CO_2$ sources and sinks using atmospheric transport models. Nature, 415, 626-630. https://doi.org/10.1038/415626a
  18. Halpert, M. S., and C. F. Ropelewski, 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5, 577-593, doi:10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;2.
  19. Heimann, M., and M. Reichstein, 2008: Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289-292. https://doi.org/10.1038/nature06591
  20. Hobbie, S. E. and F. S. Chapin III, 1996: Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry, 35, 327-338, doi:10.1007/BF02179958.
  21. House, J. I., I. C. Prentice, N. Ramankutty, R. A. Houghton, and M. Heimann, 2003: Reconciling apparent inconsistencies in estimates of terrestrial $CO_2$ sources and sinks. Tellus, 55, 345-363. https://doi.org/10.3402/tellusb.v55i2.16712
  22. Huijnen, V., and Coauthors, 2010: The global chemistry transport model TM5: Description and evaluation of the tropospheric chemistry version 3.0. Geosci. Model Dev., 3, 445-473, doi:10.5194/gmd-3-445-2010.
  23. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to The Fifth Assessment Report of The Intergovernmental Panel on Climate Change. Stocker, T. F. et al. Eds., Cambridge University Press, 1535 pp.
  24. Ise, T., C. M. Litton, C. P. Giardina, and A. Ito, 2010: Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J. Geophys. Res., 115, G040205, doi:10.1029/2010JG001326.
  25. Ito, A., and T. Oikawa, 2000: A model analysis of the relationship between climate perturbations and carbon budget anomalies in global terrestrial ecosystems: 1970-1997. Climate Res., 15, 161-183, doi:10.3354/cr015161.
  26. Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951-954, doi:10.1038/nature09396.
  27. Jung, M., and Coauthors, 2011: Global patterns of landatmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116, G00J07, doi:10.1029/2010JG001566.
  28. Kato, T., and Y. H. Tang, 2008: Spatial variability and major controlling factors of $CO_2$ sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Glob. Change Biol., 14, 2333-2348. https://doi.org/10.1111/j.1365-2486.2008.01646.x
  29. Kim, J. S., J. S. Kug, J. H. Yoon, and S. J. Jeong, 2016: Increased atmospheric $CO_2$ growth rate during El Nino driven by reduced terrestrial productivity in the CMIP5 ESMs. J. Climate, 29, 8783-8805, doi:10.1175/JCLI-D-14-00672.1.
  30. Kim, J., H. M. Kim, C.-H. Cho, K.-O. Boo, A. R. Jacobson, M. Sasakawa, T. Machida, M. Arshinov, and N. Fedoseev, 2017: Impact of Siberian observations on the optimization of surface $CO_2$ flux. Atmos. Chem. Phys., 17, 2881-2899, doi:10.5194/acp-17-2881-2017.
  31. Krol, M., S. Houweling, B. Bregman, M. van den Broek, A. Segers, P. van Velthoven, W. Peters, F. Dentener, and P. Bergamaschi, 2005: The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys., 5, 417-432, doi:10.5194/acp-5-417-2005.
  32. Kulawik, S., and Coauthors, 2016: Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON. Atmos. Meas. Tech., 9, 683-709, doi:10.5194/amt-9-683-2016.
  33. Law, B. E., and Coauthors, 2002: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. Forest Meteor., 113, 97-120. https://doi.org/10.1016/S0168-1923(02)00104-1
  34. Le Quere, C., and Coauthors, 2009: Trends in the sources and sinks of carbon dioxide. Nat. Geosci., 2, 831-836. https://doi.org/10.1038/ngeo689
  35. Malhi, Y., 2002: Carbon in the atmosphere and terrestrial biosphere in the 21st century. Philos. Trans. Roy. Soc. London, 360, 2925-2945. https://doi.org/10.1098/rsta.2002.1098
  36. Masarie, K. A., W. Peters, A. R. Jacobson, and P. P. Tans, 2014: ObsPack: A framework for the preparation, delivery, and attribution of atmospheric greenhouse gas measurements. Earth Syst. Sci. Data, 6, 375-384, doi:10.5194/essd-6-375-2014.
  37. Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running, 2003: Climate driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560-1563, doi:10.1126/science.1082750.
  38. Niu, S., M. Wu, Y. Han, J. Xia, L. Li, and S. Wan, 2008: Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol., 177, 209-219.
  39. Olson, J. S., J. A. Watts, and L. J. Allsion, 1985: Major world ecosystem complexes ranked by carbon in live vegetation. Numeric Data Package (NDP)-017, doi: 10.3334/CDIAC/lue.ndp017.
  40. Patra, P. K., S. Maksyutov, and T. Nakazawa, 2005: Analysis of atmospheric $CO_2$ growth rates at Mauna Loa using $CO_2$ fluxes derived from an inverse model. Tellus, 57, 357-365, doi:10.3402/tellusb.v57i5. 16560.
  41. Peters, W., J. B. Miller, J. Whitaker, A. S. Denning, A. Hirsch, M. C. Krol, D. Zupanski, L. Bruhwiler, and P. P. Tans, 2005: An ensemble data assimilation system to estimate $CO_2$ surface fluxes from atmospheric trace gas observations. J. Geophys. Res., 110, D24304, doi:10.1029/2005JD006157.
  42. P. P. Tans, and Coauthors, 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA, 104, 18925-18930, doi:10.1073/pnas.0708986104.
  43. Piao, S., and Coauthors, 2008: Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52, doi:10.1038/nature06444.
  44. Piao, S., P. Ciais, P. Friedlingstein, N. Noblet-Ducoudre, P. Cadule, N. Viovy, and T. Wang, 2009: Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical, 23, GB4026, doi: 10.1029/2008GB003339.
  45. Potter, C., S. Klooster, R. Myneni, V. Genovese, P.-N. Tan, and V. Kumer, 2003: Continental scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling. Global Planet. Change, 39, 201-213. https://doi.org/10.1016/j.gloplacha.2003.07.001
  46. Raupach, M. R., 2011: Carbon cycle: Pinning down the land carbon sink. Nat. Clim. Change, 1, 148-149. https://doi.org/10.1038/nclimate1123
  47. Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Nino/Southern Oscillation. Mon. Wea. Rev., 115, 1606-1626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.
  48. Schneising, O., and Coauthors, 2012: Atmospheric greenhouse gases retrieved from SCIAMACHY: Comparison to ground-based FTS measurements and model results. Atmos. Chem. Phys., 12, 1527-1540, doi: 10.5194/acp-12-1527-2012.
  49. Schneising, O., M. Reuter, M. Buchwitz, J. Heymann, H. Bovensmann, and J. P. Burrows, 2014: Terrestrial carbon sink observed from space: variation of growth rates and seasonal cycle amplitudes in response to interannual surface temperature variability. Atmos. Chem. Phys., 14, 133-141, doi:10.5194/acp-14-133-2014.
  50. Wieder, W. R., C. C. Cleveland, and A. R. Townsend, 2009: Controls over leaf litter decomposition in wet tropical forests. Ecology, 90, 3333-3341. https://doi.org/10.1890/08-2294.1
  51. Xia, J., J. Chen, S. Piao, P. Ciais, Y. Luo, and S. Wan, 2014: Terrestrial carbon cycle affected by non-uniform climate warming. Nature, 7, 173-180, doi:10.1038/ngeo2093.
  52. Yu, G. R., and Coauthors, 2013: Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob. Change Biol., 19, 798-810, doi: 10.1111/gcb.12079.
  53. Zeng, N., A. Mariotti, and P. Wetzel, 2005: Terrestrial mechanisms of interannual $CO_2$ variability. Global biogeochemical, 19, GB1016, doi:10.1029/2004GB002273.
  54. Zeng, Z. C., and Coauthors, 2017: Global land mapping of satellite-observed $CO_2$ total columns using spatiotemporal geostatistics. Int. J. Digital Earth, 10, 426-456, doi:10.1080/17538947.2016.1156777.
  55. Zhao, M., and S. W. Running, 2010: Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940-943, doi:10.1126/science.1192666.