• Title/Summary/Keyword: Terrain Interpolation

Search Result 75, Processing Time 0.019 seconds

A Study on the Application of Combined Interpolation and Terrain Classification in Digital Terrain Model (수치지형모형에 있어 지형의 분석과 조합보관법의 적용에 관한 연구)

  • Yeu, Bock-Mo;Park, Woon-Yong;Kwon, Hyon;Mun, Du-Yeoul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.2
    • /
    • pp.53-61
    • /
    • 1990
  • In this study, terrain classification was done by using the quantitative classification parameter and suitable interpolation method was applied to improve the accuracy of digital terrain models and to increase its practical applications. A study area was classified into three groups using the quantitative classification parameters and an interpolation equation suitable for each group was used for economical application of the interpolation method. The accuracy of digital terrain models was improved in case of large grid intervals by applying combined interpolation method suitable for each terrain group.

  • PDF

A Study on the Application of Interpolation and Terrain Classification for Accuracy Improvement of Digital Elevation Model (수지표고지형의 정확도 향상을 위한 지형의 분류와 보간법의 상용에 관한 연구)

  • 문두열
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.64-79
    • /
    • 1994
  • In this study, terrain classification, which was done by using the quantitative classification parameters and suitable interpolation method was applied to improve the accuracy of digital elevation models, and to increase its practical use of aerial photogrammetry. A terrain area was classified into three groups using the quantitative classification parameters to the ratio of horizontal, inclined area, magnitude of harmonic vectors, deviation of vector, the number of breakline and proposed the suitable interpolation. Also, the accuracy of digital elevation models was improved in case of large grid intervals by applying combined interpolation suitable for each terrain group. As a result of this study, I have an algorithm to perform the classification of the topography in the area of interest objectively and decided optimal data interpolation scheme for given topography.

  • PDF

A Study on Terrain Classification and Interpolation in Digital Terrain Model (수치지형모델에 있어서 지형분류와 보간에 관한 연구)

  • Yeu, Bock-Mo;Kwon, Hyon;Kim, In-Sup
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.7 no.2
    • /
    • pp.53-61
    • /
    • 1989
  • In this paper the quantitative classification parameters of terrain which can be practicable to the interpolation of digital terrain model forming a regular grid pattern have been suggested and objective terrain classification have been established by making a cluster analysis using these parameters. Also, interpolation suitable to the classification of terrain has been used by making a descriminant alaysis from description parameters of terrains. The terrain classification in this paper was dependent upon two parameters of the ratio horizontal area to inclined area and the magnitude of harmonic vectors. And the studying area was seperated to three groups of terrains by these two parameters. Three groups of terrains could be classified into the discriminant functions. By determining the ratio of area and harmonic vector magnitude in any terrains using the above discriminant function, it was possible to discriminate the terrains to apply the interpolation practicable to the terrain characteristics.

  • PDF

The Survey of Interpolation Methods for the Digital Terrain Model in the Geographic Information System (토지정보관리체계의 수치지형정보에 활용되는 보간법에 대한 비교연구)

  • 이규석;이환용;서혜진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.2
    • /
    • pp.17-22
    • /
    • 1990
  • The Digital Terrain Model(DTM) data in the Geographic Information System(GIS) needs to be interpolated for various purposes. Three interpolation methods-Bilinear, Bicubic Spline, and Gregory-Newton interpolation-were used, compared, and analyzed in terms of the visual comparison and numerical analysis in the hilly terrain and relatively flat terrain.

  • PDF

A Study on the Interpolation of DTM Applying Moving Average and Linear Prediction Method (이동평균법과 선형예측법을 이용한 수치지형의 보간에 관한 연구)

  • 이석찬;조규전;최병길
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.4 no.1
    • /
    • pp.58-71
    • /
    • 1986
  • A Digital Terrain Model (DTM) consists of two components;one is sampling of the terrain imformation, and the other is interpolation. The present study aims at the investigation of the accuracy and efficiency of Moving Average and Linear Prediction interpolation methods by numerical experiment. Basic input data are the elerations in square grid which procured by photogrammetry, and the accuracy of each interpolation is investigated on different grid size, terrain type and pattern of reference points.

  • PDF

The Wireless Network Optimization of Power Amplification via User Volume in the Microcell Terrain

  • Guo, Shengnan;Jiang, Xueqin;Zhang, Kesheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2581-2594
    • /
    • 2018
  • The microcell terrain is the most common wireless network terrain in our life. In order to solve wireless network optimization of weak coverage in the microcell terrain, improve call quality and reduce the cost of the premise, power amplifiers in base stations should be adjusted according to user volume. In this paper, characteristics of microcell topography are obtained after analysis. According to the topography characteristics of different microcells, changes in the number of users at different times have been estimated, meanwhile, the number of scatter users are also obtained by monitoring the PCCPCH RSCP and other parameters. Then B-Spline interpolation method has been applied to scatter users to obtain the continuous relationship between the number of users and time. On this basis, power amplification can be chosen according to changes in the number of users. The methods adopted by this paper are also applied in the engineering practice, sampling and interpolation are used to obtain the number of users at all times, so that the power amplification can be adjusted by the number of users in a microcell. Such a method is able to optimize wireless network and achieve a goal of expanding the area of base stations, reduce call drop rate and increase capacity.

A Study on the Terrain Interpolation Using Fractal Method (프랙탈 기법을 이용한 지형 보간에 관한 연구)

  • Kwon, Kee Wook;Lee, Jong Dal
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.895-907
    • /
    • 2006
  • In this study, in order to maximize the accuracy and efficiency of the existing interpolation method fractal methods are applied. Developed FEDISA model revives the irregularity of the real terrain with only a few information about base terrain, which can produce almost complete geographic information. The area of the model is set to $150m{\times}150m$, $300m{\times}300m$, $600m{\times}600m$, $1,200m{\times}1,200m$ to compare the real data with the data of the existing interpolation method and FEDISA model. By statistical verification of the results, the adaptability and efficiency of FEDISA model are investigated. It seems that FEDISA model will help a lot to obtain the terrain information about the changed terrain, such as the bottom of reservoirs and dams as well as large amount of destruction due to cutting and banking.

Efficient Triangulation Algorithm for Constructing the Model Surface from the Interpolation of Irregularly-Spaced Laser Scanned Data

  • Shon, Ho-Woong
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.3
    • /
    • pp.153-157
    • /
    • 2005
  • A discussion of a method has been used with success in terrain modelling to estimate the height at any point on the land surface from irregularly distributed samples. The special requirements of terrain modelling are discussed as well as a detailed description of the algorithm and an example of its application.

  • PDF

Fractal-Based Interpolation of Sea Floor Terrains (프랙탈에 기초한 해저지형의 보간)

  • Lee, Hyun-Shik;Park, Dong-Jin;Jin, Gang-Gyoo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.451-456
    • /
    • 2009
  • In this paper, we presents an algorithm which generates its high-resolution DTM using a low-resolution DTM of the sea floor terrain and fractal theory. The fractal dimension of each patch region divided from the DTM is extracted and then with this information and original data, each cell region in the patch is interpolated using the midpoint displacement method and a median filter is incorporated to generate natural and smooth sea floor surface. The effectiveness of the proposed algorithm is tested on a fractal terrain map.

Evaluation of the Optimum Interpolation for Creating Hydraulic Model from Close Range Digital Photogrammetry (근접수치사진측량으로 수리모형해석에 적용 시 최적보간법 평가)

  • Choi Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.251-260
    • /
    • 2005
  • The Development of CCD has contributed to great advancement in mapping technology with giving benefits to research community of photogrammetry. The purpose of this paper is to find the best selection of interpolation method for creating a terrain model form close range digital photogrammetry. T-test as a kind of statistical analysis was conducted to analyze the similarity of hydraulic model with close range digital photogrammetry and trigonometric leveling. Also, many interpolation methods such as inverse distance, kriging, nearest neighbor and TIN about the hydraulic model interpolation were conducted to compare the results for computer to display actual terrain an optimum interpolation of the digital elevation model form close range digital photogrammetry. The results revealed that kriging and TIN interpolation were efficient methods to judge the hazard interpolation law by analyzing geometric similarity of hydraulic model against hydraulic model application.