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Efficient Triangulation Algorithm for Constructing the Model Surface 
from the Interpolation of Irregularly-Spaced Laser Scanned Data 
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ABSTRACT A discussion of a method has been used with success in terrain modelling to estimate the height at 
any point on the land surface from irregularly distributed samples. The special requirements of terrain
modelling are discussed as well as a detailed description of the algorithm and an example of its application. 
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1. Introduction

There are a number of possible techniques that can be used 

for surface interpolation, that is, estimating the height at a 

point given nearby sample heights. Some of the more com-

mon methods are natural neighbour interpolation, surface 

patches, quadratic surfaces, polynomial interpolation, 

spline interpolation, and Delauney Triangulation an im-

plementation of which is described here. Some such inter-

polation is often required in the display of empirical data, 

for example, terrain modelling where elevation samples are 

obtained from surveys, meteorology where data is collected 

from weather stations, regional planning using data collec-

tion stations, and mesh generation for finite element 

analysis. 

This paper discusses a technique suitable for terrain mod-

elling but also for other applications which have the follow-

ing characteristics : 

○ There are regions of high and low sample density. For 

example, in terrain modelling there will generally be a 

low sample density inside bodies of water and a high sam-

ple density in the areas of particular interest. 

○ There may be discontinuities in the surface resulting in 

samples very close to each other on the sample plane but 

of wildly differing height values. These may be natural 

structures as cliffs and river banks or man-made dis-

continuities like retaining walls. Most smoothing meth-

ods do not handle these cases very well especially those 

based on polygonal functions where surface overshoot, 

oscillation and general instability occurs. 

○ the samples often lie along contours. These may be de-

rived from existing contour maps or from the paths taken 

by a survey team. This is another aspect of differing sam-

ple densities. Along the sampling curves there is a high 

sampling density but perpendicular to the path there are 

no samples until the next path is reached. 

○ A large number of samples will often need to be handled. 

The time needs to increase modestly as the number of 

samples increases for a technique to be suitable. Typical 

sample numbers may be from 100 to 100,000. Such large 

numbers of samples are particularly common when auto-

mated sampling methods are employed. 

○ Samples are often obtained in an incremental procedure. 

An initial sample may be collected and analyzed, the 

areas of interest can then be sampled at a higher density. 

It is advantageous to be able to add the new points to the 

surface obtained so far thus refining the current surface 

definition as opposed to recomputing the surface from 

scratch from the combined set of data points. 

○ The algorithm should be such that it can be run on desktop 

computers where large amounts of memory, disk space 

or fast processors can not be assumed. 

The technique to be discussed has been used for terrain 

modelling with success, it copes with the above aspects of 

many terrain data sets, and it readily lends itself to grid and 

contour generation as well as 3D rendering.
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Fig. 1 Delauney triangles (thin lines) and associated Direchlet  
Tesselations (thick lines) for nine generating points. Triangle 
edges are perpendicular bisectors of the tile edges. Points within 
a tile are closer to the tile's generating point than to any other 
generating point.

2. Triangulation

Triangulation involves creating from the sample points 

a set of non-overlapping triangularly bounded facets, the 

vertices of the triangles are the input sample points. There 

are a number of triangulation algorithms that may be advo-

cated, the more popular algorithms are the radial sweep 

method and the Watson algorithm which implement 

Delaunay triangulation. 

The Delauney triangulation is closely related geometri-

cally to the Direchlet tesselation also known as the Voronoi 

or Theissen tesselations (Fig. 1). These tesselations split the 

plane into a number of polygonal regions called tiles. Each 

tile has one sample point in its interior called a generating 

point. All other points inside the polygonal tile are closer 

to the generating point than to any other. The Delauney trian-

gulation is created by connecting all generating points which 

share a common tile edge. Thus formed, the triangle edges 

are perpendicular bisectors of the tile edges. 

Such a triangulation has many desirable features. It can 

be shown that a convex equilateral formed by two adjacent 

triangles has a greater minimum internal angle than if the 

equilateral was formed another way. In this sense the tri-

angles are as equilateral as possible, thin wedge shaped tri-

angles are avoided. 

The triangulation is unique (independent of the order in 

which the sample points are ordered) for all but trivial cases. 

One such case is if four points lie on the corners of a rectangle, 

they may be triangulated in one of two ways. These situation 

occur rarely in real data but if uniqueness is important then 

a straightforward solution is to perturb one or more of the 

vertices on the offending rectangle. 

One particular situation where many other techniques 

perform poorly is when there is a mixture of regions of high 

and low density sampling. Triangulation based methods 

honor this situation by giving a large number of triangles and 

hence more detail to the highly sampled regions and large 

triangles, less detail, to the regions with a few samples. 

Discontinuities are handled quite naturally. The surface 

can have a discontinuity as narrow as the sampling process 

permits, it simply results in near vertical triangular facets. 

Note however that unless special action is taken there can 

not be two samples at precisely the same point on the sample 

plane but with different heights. This can occur with discrete 

digitizer when digitizing near discontinuities. A perturba-

tion of the sample point in the correct direction is usually 

a satisfactory solution to this problem. 

An algorithm to implement triangulation can be quite ef-

ficient and thus suitable for areas with a large number of 

samples. Furthermore if further samples are obtained at a 

later date they can be added to the already existing triangu-

lation without having to triangulate all the samples plus the 

extra samples. This makes it possible to efficiently perform 

a successive refinement on those areas where more detailed 

information is required. 

The planar surfaces formed may be used directly as facets 

making up the surface or they may be used to produce sam-

ples on a regular grid. Given a list of triangular bounded fac-

ets it is simply a matter of finding the facet whose projection 

onto the sample plane encloses the point to be estimated. The 

intersection of the facet plane at the grid point is the estimate 

of the height. Another method of estimating the points on 

a grid is to use the Direchlet tesselations instead of the trian-

gular facets. This avoids the cone shaped peaks about local 

minima and maxima which the first method tends to 

generate. It is intuitively more appealing because the tesse-

lations correspond to an area of influence about the sample 

points. Contour maps can be generated directly from the tri-

angular facets or from the samples distributed on a rec-

tangular grid. Generating smooth surfaces if that is required 

is also generally easier if gridded data is available. 
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3. Algorithm

At any stage of the triangulation process one has an exist-

ing triangular mesh and a sample point to add to that mesh. 

The process is initiated by generating a supertriangle, an arti-

ficial triangle which encompasses all the points. At the end 

of the triangulation process any triangles which share edges 

with the supertriangle are deleted from the triangle list:

1. (Fig. 2a) : All the triangles whose circumcircle encloses 

the point to be added are identified, the outside edges of 

those triangles form an enclosing polygon. (The circum-

circle of a triangle is the circle which has the three vertices 

of the triangle lying on its circumference). 

2. (Fig. 2b) : The triangles in the enclosing polygon are de-

leted and new triangles are formed between the point to 

be added and each outside edge of the enclosing polygon. 

3. (Fig. 2c) : After each point is added there is a net gain of 

two triangles. Thus the total number of triangles is twice 

the number of sample points. (This includes the super-

triangle, when the triangles sharing edges with the super-

triangle are deleted at the end the exact number of tri-

angles will be less than twice the number of vertices, the 

exact number depends on the sample point distribution) 

The triangulation algorithm may be described in pseu-

do-code as follows:

subroutine triangulate

input : vertex list

output : triangle list

   initialize the triangle list

   determine the supertriangle

   add supertriangle vertices to the end of the vertex list

   add the supertriangle to the triangle list

   for each sample point in the vertex list

      initialize the edge buffer

      for each triangle currently in the triangle list

         calculate the triangle circumcircle center and radius

         if the point lies in the triangle circumcircle then

            add the three triangle edges to the edge buffer

            remove the triangle from the triangle list

         endif

      endfor

      delete all doubly specified edges from the edge buffer

         this leaves the edges of the enclosing polygon only

      add to the triangle list all triangles formed between 

the point 

         and the edges of the enclosing polygon

   endfor

   remove any triangles from the triangle list that use the 

supertriangle vertices

   remove the supertriangle vertices from the vertex list

end

The above can be refined in a number of ways to make 

it more efficient. The most significant improvement is to pre-

sort the sample points by one coordinate, the coordinate used 

should be the one with the greatest range of samples. If the 

x axis is used for presorting then as soon as the x component 

of the distance from the current point to the circumcircle cen-

ter is greater than the circumcircle radius, that triangle need 

never be considered for later points, as further points will 

never again be on the interior of that triangles circumcircle. 

With the above improvement the algorithm presented here 

increases with the number of points as approximately 

O(N^1.5). 

The time taken is relatively independent of the input sam-

ple distribution, a maximum of 25% variation in execution 

times has been noticed for a wide range of naturally occur-

ring distributions as well as special cases such as normal, 

uniform, contour and grid distributions. 

The algorithm does not require a large amount of internal 

storage. The algorithm only requires one internal array and 

that is a logical array of flags for identifying those triangles 

that no longer need be considered. If memory is available 

another speed improvement is to save the circumcircle cen-

ter and radius for each triangle as it is generated instead of 

recalculating them for each added point. It should be noted 

that if sufficient memory is available for the above and other 

speed enhancements then the increase in execution time is 

almost a linear function of the number of points. 

An example where the triangulation algorithm described 

above is used to model land surfaces is given in Figs. 3 and 

4. 

4. Conclusions

A discussion of a method has been used with success in 

terrain modelling to estimate the height at any point on the 

land surface from irregularly distributed samples. 

Triangulation involves creating from the sample points 
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Fig. 2(a) New sample point to be added to existing triangular mesh.

Fig. 2(b) Triangles whose circumcircle include the new point form an enclosing polygon. 

Fig. 2(c) New triangular polygons formed from new point to the outside edges of the enclosing polygon. 
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Fig. 4 A perspective wire frame of a gridded surface obtained from 
a triangulated mesh. 

Fig. 3 The result of triangulating spot heights. 

a set of non-overlapping triangularly bounded facets, the 

vertices of the triangles are the input sample points.

The Delauney triangulation is closely related geometri-

cally to the Direchlet tesselation also known as the Voronoi 

or Theissen tesselations. These tesselations split the plane 

into a number of polygonal regions. Each tile has one sample 

point in its interior called a generating point. All other points 

inside the polygonal tile are closer to the generating point 

than to any other. The Delauney triangulation is created by 

connecting all generating points which share a common

tile edge. Thus formed, the triangle edges are perpendicular 

bisectors of the tile edges. 

The technique to be discussed has been used for terrain 

modelling with success, it copes with the above aspects of 

many terrain data sets, and it readily lends itself to grid and 

contour generation as well as 3D rendering.
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