• Title/Summary/Keyword: Terrain Data

Search Result 949, Processing Time 0.027 seconds

A Prediction of Turbulent Characteristics in a Complex Terrain by Linear Theory (선형이론에 의한 복잡지형 내 난류 특성의 예측)

  • Yoon, J.E.;Kyong, N.H.;Kim, S.W.
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.79-86
    • /
    • 2005
  • The external conditions for estimating dynamic wind loads of wind turbines, such as the turbulence, the extreme wind, the mean velocity gradients and the flow angles, are simulated over GangWon Wind Energy Test Field placed in one of the most complex terrain in Korea. Reference meteorological data has been gathered at a height of 30m from 2003 to 2004 with a ultrasonic anemometer. The absolute value of the spectral energy are simulated and the verification of this prediction has been carried out with comparing to the experimental data. The most desirable place for constructing new wind turbine are resulted as Point 2 and Point 3 due to the lower value of Turbulence Intensity and the higher value of wind resource relatively.

An Assessment of WAsP Prediction in a Complex Terrain (복잡지형에서의 WAsP 예측성 평가)

  • Kyong, N.H.;Yoon, J.E.;Huh, J.C.;Jang, D.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.1
    • /
    • pp.39-47
    • /
    • 2003
  • In order to test the predictability of the wind resource assessment computer code in our country a field experiment and prediction by WAsP has been compared. A field experiment has been performed in Songdang province, Jeju island, composed of sea, inland flat terrain, a high and a low slope craters. For this experiment, four meteorological towers have been installed at seashores, inland flat and on a crater. Wind resource at one site is predicted by WAsF with the meteorological data at the other three sites. The comparisons show that the WAsP preditions give better agreement with experimental data by adjusting the roughness descriptions.

Wind Speed Prediction using WAsP for Complex Terrain (복합지형에 대한 WAsP의 풍속 예측성 평가)

  • Yoon, Kwang-Yong;Yoo, Neung-Soo;Paek, In-Su
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.199-207
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

The Generation of Directional Velocity Grid Map for Traversability Analysis of Unmanned Ground Vehicle (무인차량의 주행성분석을 위한 방향별 속도지도 생성)

  • Lee, Young-Il;Lee, Ho-Joo;Jee, Tae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.549-556
    • /
    • 2009
  • One of the basic technology for implementing the autonomy of UGV(Unmanned Ground Vehicle) is a path planning algorithm using obstacle and raw terrain information which are gathered from perception sensors such as stereo camera and laser scanner. In this paper, we propose a generation method of DVGM(Directional Velocity Grid Map) which have traverse speed of UGV for the five heading directions except the rear one. The fuzzy system is designed to generate a resonable traveling speed for DVGM from current patch to the next one by using terrain slope, roughness and obstacle information extracted from raw world model data. A simulation is conducted with world model data sampled from real terrain so as to verify the performance of proposed fuzzy inference system.

Wind Speed Prediction using WAsP for Complex Terrain (WAsP을 이용한 복잡지형의 풍속 예측 및 보정)

  • Yoon, Kwang-Yong;Paek, In-Su;Yoo, Neung-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-273
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

Development of Mobile 3D Terrain Viewer with Texture Mapping of Satellite Images

  • Kim, Seung-Yub;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.351-356
    • /
    • 2006
  • Based on current practical needs for geo-spatial information on mobile platform, the main theme of this study is a design and implementation of dynamic 3D terrain rendering system using spaceborne imagery, as a kind of texture image for photo-realistic 3D scene generation on mobile environment. Image processing and 3D graphic techniques and algorithms, such as TIN-based vertex generation with regular spacing elevation data for generating 3D terrain surface, image tiling and image-vertex texturing in order to resolve limited resource of mobile devices, were applied and implemented by using graphic pipeline of OpenGL|ES (Embedded System) API. Through this implementation and its tested results with actual data sets of DEM and satellite imagery, we demonstrated the realizable possibility and adaptation of complex typed and large sized 3D geo-spatial information in mobile devices. This prototype system can be used to mobile 3D applications with DEM and satellite imagery in near future.

A study on the utilization of drones and aerial photographs for searching ruins with a focus on topographic analysis (유적탐색을 위한 드론과 항공사진의 활용방안 연구)

  • Heo, Ui-Haeng;Lee, Wal-Yeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.2
    • /
    • pp.22-37
    • /
    • 2018
  • Unmanned aerial vehicles (UAV) have attracted considerable attention both at home and abroad. The UAV is equipped with a camera that shoots images, which is advantageous for access to areas where archaeological investigations are not possible. Moreover, it is possible to acquire three-dimensional spatial image information by modeling the terrain through aerial photographing, and it is possible to specify the interpretation of the terrain of the survey area. In addition, if we understand the change of the terrain through comparison with past aerial photographs, it will be very helpful to grasp the existence of the ruins. The terrain modeling for searching these remains can be divided into two parts. First, we acquire the aerial photographs of the current terrain using the drone. Then, using image registration and post-processing, we complete the image-joining and terrain-modeling using past aerial photographs. The completed modeled terrain can be used to derive several analytical results. In the present terrain modeling, terrain analysis such as DSM, DTM, and altitude analysis can be performed to roughly grasp the characteristics of the change in the form, quality, and micro-topography. Past terrain modeling of aerial photographs allows us to understand the shape of landforms and micro-topography in wetlands. When verified with actual findings and overlapping data on the modelling of each terrain, it is believed that changes in hill shapes and buried Microform can be identified as helpful when used in low-flying applications. Thus, modeling data using aerial photographs is useful for identifying the reasons for the inability to carry out archaeological surveys, the existence of terrain and ruins in a wide area, and to discuss the preservation process of the ruins. Furthermore, it is possible to provide various themes, such as cadastral maps and land use maps, through comparison of past and present topographical data. However, it is certain that it will function as a new investigation methodology for the exploration of ruins in order to discover archaeological cultural properties.

Efficient Triangulation Algorithm for Constructing the Model Surface from the Interpolation of Irregularly-Spaced Laser Scanned Data

  • Shon, Ho-Woong
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.3
    • /
    • pp.153-157
    • /
    • 2005
  • A discussion of a method has been used with success in terrain modelling to estimate the height at any point on the land surface from irregularly distributed samples. The special requirements of terrain modelling are discussed as well as a detailed description of the algorithm and an example of its application.

  • PDF

Massive Terrain Rendering Method Using RGBA Channel Indexing of Wavelet Coefficients (웨이블릿 압축 계수의 RGBA채널 인덱싱을 이용한 대용량 지형 렌더링 기법)

  • Kim, Tae-Gwon;Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.13 no.5
    • /
    • pp.55-62
    • /
    • 2013
  • Since large terrain data can not be loaded on the GPU or CPU memory at once, out-of-core methods which read necessary part from the secondary storage such as a hard disk are commonly used. However, long delay may occur due to limited bandwidth while loading the data from the hard disk to memory. We propose efficient rendering method of large terrain data, which compresses the data with wavelet technique and save its coefficients in RGBA channel of an image us, then decompresses that in rendering stage. Entire process is performed in GPU using Direct Compute. By reducing the amount of data transfer, performing wavelet computations in parallel and doing decompression quickly on the GPU, our method can reduce rendering time effectively.

LOSSLESS DATA COMPRESSION ON SAR DISPLAY IMAGES (SAR 디스플레이 영상을 위한 무손실 압축)

  • Lee, Tae-hee;Song, Woo-jin;Do, Dae-won;Kwon, Jun-chan;Yoon, Byung-woo
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.117-120
    • /
    • 2001
  • Synthetic aperture radar (SAR) is a promising active remote sensing technique to obtain large terrain information of the earth in all-weather conditions. SAR is useful in many applications, including terrain mapping and geographic information system (GIS), which use SAR display images. Usually, these applications need the enormous data storage because they deal with wide terrain images with high resolution. So, compression technique is a useful approach to deal with SAR display images with limited storage. Because there is some indispensable data loss through the conversion of a complex SAR image to a display image, some applications, which need high-resolution images, cannot tolerate more data loss during compression. Therefore, lossless compression is appropriate to these applications. In this paper, we propose a novel lossless compression technique for a SAR display image using one-step predictor and block arithmetic coding.

  • PDF