• Title/Summary/Keyword: Tensor Representation Theory

Search Result 15, Processing Time 0.019 seconds

On Constructing an Explicit Algebraic Stress Model Without Wall-Damping Function

  • Park, Noma;Yoo, Jung-Yul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1522-1539
    • /
    • 2002
  • In the present study, an explicit algebraic stress model is shown to be the exact tensor representation of algebraic stress model by directly solving a set of algebraic equations without resort to tensor representation theory. This repeals the constraints on the Reynolds stress, which are based on the principle of material frame indifference and positive semi-definiteness. An a priori test of the explicit algebraic stress model is carried out by using the DNS database for a fully developed channel flow at Rer = 135. It is confirmed that two-point correlation function between the velocity fluctuation and the Laplacians of the pressure-gradient i s anisotropic and asymmetric in the wall-normal direction. Thus, a novel composite algebraic Reynolds stress model is proposed and applied to the channel flow calculation, which incorporates non-local effect in the algebraic framework to predict near-wall behavior correctly.

A PARTICULAR SOLUTION OF THE EINSTEIN'S EQUATION IN EVEN-DIMENSIONAL UFT Xn

  • Lee, Jong Woo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.185-195
    • /
    • 2010
  • In the unified field theory(UFT), in order to find a solution of the Einstein's equation it is necessary and sufficient to study the torsion tensor. The main goal in the present paper is to obtain, using a given torsion tensor (3.1), the complete representation of a particular solution of the Einstein's equation in terms of the basic tensor $g_{{\lambda}{\nu}}$ in even-dimensional UFT $X_n$.

THE CURVATURE TENSORS IN THE EINSTEIN'S $^*g$-UNIFIED FIELD THEORY II. THE CONTRACTED SE-CURVATURE TENSORS OF $^*g-SEX_n$

  • Chung, Kyung-Tae;Chung, Phil-Ung;Hwang, In-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.641-652
    • /
    • 1998
  • Chung and et al. ([2].1991) introduced a new concept of a manifold, denoted by $^{\ast}g-SEX_n$, in Einstein's n-dimensional $^{\ast}g$-unified field theory. The manifold $^{\ast}g-SEX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^{\ast}g^{\lambda \nu}$ through the SE-connection which is both Einstein and semi-symmetric. In this paper, they proved a necessary and sufficient condition for the unique existence of SE-connection and sufficient condition for the unique existence of SE-connection and presented a beautiful and surveyable tensorial representation of the SE-connection in terms of the tensor $^{\ast}g^{\lambda \nu}$. Recently, Chung and et al.([3],1998) obtained a concise tensorial representation of SE-curvature tensor defined by the SE-connection of $^{\ast}g-SEX_n$ and proved deveral identities involving it. This paper is a direct continuations of [3]. In this paper we derive surveyable tensorial representations of constracted curvature tensors of $^{\ast}g-SEX_n$ and prove several generalized identities involving them. In particular, the first variation of the generalized Bianchi's identity in $^{\ast}g-SEX_n$, proved in theorem (2.10a), has a great deal of useful physical applications.

  • PDF

Analysis of response time of twisted-nematic liquid-crystal cells with low twist angle

  • Nam, Chul;Park, Woo-Sang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.195-196
    • /
    • 2000
  • Fast response time is realized by using LTN-LCDs. To calculate the dynamic electro-optical characteristics, Ericksen-Leslie theory is used for the dynamic profile of molecules and order tensor representation is adopted for the free energy calculation.

  • PDF

THE CURVATURE TENSORS IN THE EINSTEIN′S *g- UNIFIED FIELD THEORY I. THE SE-CURVATURE TENSOR OF *g-SE $X_{n}$

  • Chung, Kyung-Tae;Chung, Phil-Ung;Hwang, In-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1045-1060
    • /
    • 1998
  • Recently, Chung and et al. ([11], 1991c) introduced a new concept of a manifold, denoted by *g-SE $X_{n}$ , in Einstein's n-dimensional *g-unified field theory. The manifold *g-SE $X_{n}$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor * $g^{λν}$ through the SE-connection which is both Einstein and semi-symmetric. In this paper, they proved a necessary and sufficient condition for the unique existence of SE-connection and presented a beautiful and surveyable tensorial representation of the SE-connection in terms of the tensor * $g^{λν}$. This paper is the first part of the following series of two papers: I. The SE-curvature tensor of *g-SE $X_{n}$ II. The contracted SE-curvature tensors of *g-SE $X_{n}$ In the present paper we investigate the properties of SE-curvature tensor of *g-SE $X_{n}$ , with main emphasis on the derivation of several useful generalized identities involving it. In our subsequent paper, we are concerned with contracted curvature tensors of *g-SE $X_{n}$ and several generalized identities involving them. In particular, we prove the first variation of the generalized Bianchi's identity in *g-SE $X_{n}$ , which has a great deal of useful physical applications.tions.

  • PDF

EIGHT-DIMENSIONAL EINSTEIN'S CONNECTION FOR THE FIRST CLASS II. THE EINSTEIN'S CONNECTION IN 8-g-UFT

  • Hwang, In-Ho;Han, Soo-Kyung;Chung, Kyung-Tae
    • Honam Mathematical Journal
    • /
    • v.30 no.1
    • /
    • pp.53-64
    • /
    • 2008
  • Lower dimensional cases of Einstein's connection were already investigated by many authors for n = 2, 3, 4, 5, 6. In the following series of two papers, we present a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor: I. The recurrence relations in 8-g-UFT II. The Einstein 's connection in 8-g-UFT In our previous paper [1], we investigated some algebraic structure in Einstein's 8-dimensional unified field theory (i.e., 8-g-UFT), with emphasis on the derivation of the recurrence relations of the third kind which hold in 8-g-UFT. This paper is a direct continuation of [1]. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 8-g-UFT and to display a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations of the third kind obtained in the first paper [1]. All considerations in this paper are restricted to the first class only of the generalized 8-dimensional Riemannian manifold $X_8$, since the cases of the second class are done in [2], [3] and the case of the third class, the simplest case, was already studied by many authors.

EIGHT-DIMENSIONAL EINSTEIN'S CONNECTION FOR THE SECOND CLASS II. THE EINSTEIN'S CONNECTION IN 8-g-UFT

  • HAN, SOO KYUNG;HWANG, IN HO;CHUNG, KYUNG TAE
    • Honam Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.131-140
    • /
    • 2005
  • Lower dimensional cases of Einstein's connection were already investigated by many authors for n = 2, 3, 4, 5, 6, 7. In the following series of two papers, we present a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor: I. The recurrence relations in 8-g-UFT II. The Einstein's connection in 8-g-UFT In our previous paper [1], we investigated some algebraic structure in Einstein's 8-dimensional unified field theory (i.e., 8-g-UFT), with emphasis on the derivation of the recurrence relations of the third kind which hold in 8-g-UFT. This paper is a direct continuation of [1]. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 8-g-UFT and to display a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations of the third kind obtained in the first paper [1]. All considerations in this paper are restricted to the second class only of the generalized 8-dimensional Riemannian manifold $X_8$, since the case of the first class are done in [2], [3] and the case of the third class, the simplest case, was already studied by many authors.

  • PDF

n-DIMENSIONAL CONSIDERATIONS OF EINSTEIN'S CONNECTION FOR THE THIRD CLASS

  • Hwang, In-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.575-588
    • /
    • 1999
  • Lower dimensional cases of Einstein's connection were al-ready investigated by many authors for n =2,4. This paper is to ob-tain a surveyable tensorial representation of n-dimensional Einstein's connection in terms of the unified field tensor with main emphasis on the derivation of powerful and useful recurrence relations which hold in n-dimensional Einstein's unified field theory(i.e., n-*g-UFT): All con-siderations in this paper are restricted to the third class only.

AN EINSTEIN'S CONNECTION WITH ZERO TORSION VECTOR IN EVEN-DIMENSIONAL UFT Xn

  • Lee, Jong Woo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.869-881
    • /
    • 2011
  • The main goal in the present paper is to obtain a necessary and sufficient condition for a new connection with zero torsion vector to be an Einstein's connection and derive some useful representation of the vector defining the Einstein's connection in even-dimensional UFT $X_n$.

Singular Cell Integral of Green's tensor in Integral Equation EM Modeling (적분방정식 전자탐사 모델링에서 Green 텐서의 특이 적분)

  • Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • We describe the concept of the singularity in the integral equation of electromagnetic (EM) modeling in comparison with that in the integral representation of electric fields in EM theory, which would clarify the singular integral problems of the Green's tensor. We have also derived and classified the singular integrals of the Green's tensors in 3-D, 2.5-D and 2-D as well as in the thin sheet integral equations of the EM scattering problem, which have the most important effect on the accuracy of the numerical solution of the problems.

  • PDF