• Title/Summary/Keyword: Tension cracks

Search Result 248, Processing Time 0.029 seconds

A Case Study on the Reinforcement of Stabilizing Piles against Slope Failures in a Cut Slope (사면붕괴가 발생된 절개사면에서의 억지말뚝 보강 사례연구)

  • Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.189-199
    • /
    • 2006
  • This paper presents a field study of the stability of slope collapsed during road construction and proposes a reasonable countermeasure if the current slope is unstable. As a result of slope investigation, it was found that the slope includes five tension cracks and the sliding surface is started from the tension crack and propagated the surface soil layer through weathered rock layer. The slope stability analyses are conducted in case of dry and rainfall seasons. The results indicate that the slope is unstable status. A reinforcement method of slope failure should be selected according to the scale of failure. That is, the scale of slope failure, which is classified small, middle and large size determines the reinforcement method of slope. Since the slope interested in this study is large size failure slope, the reinforcement method to control slope failure is selected stabilizing piles, and seed spray and drainage of surface waterare also selected to remain the factor of safety. The SLOPILE (Ver. 3.0) program is applied in order to do stability analysis of slope reinforced by piles. As the result of analysis, the slope reinforced by a row of piles shows the stable state. It is clearly confirmed that the stabilizing of piles can improve the stability of slope.

Effect of Fiber Volume Fractions on Flow and Uniaxial Tension Properties of 3D Printed SHCC (3D 프린팅용 SHCC의 흐름값과 1축 인장 특성에 미치는 섬유 혼입률의 영향)

  • Chang-Jin Hyun;Hyo-Jung Kim;Byung-Jae Lee;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.83-90
    • /
    • 2024
  • This study investigates the 3D printing characteristics of strain hardening cement composites (SHCC) reinforced by PVA fibers. Three SHCC mixtures with diverse fiber volume fractions (1.0% for F1.0 mixture, 1.5% for F1.5 mixture, and 1.8% for F1.8 mixture) were designed. Except for the F1.0 mixture, all mixtures met the necessary conditions for multiple micro-cracking, with higher fiber volume fractions more readily satisfying these conditions. The flow values of three SHCC mixtures were within the 3D printable range of 120~160 mm, exhibiting decreased flow values with increasing the fiber volume fractions. Observation of the printed SHCC surfaces indicated that the F1.0 mixture had a Level-3 (good) rating, while F1.5 and F1.8 were rated as Level-2 (average). Higher fiber volume fractions resulted in poorer surface quality, thus, further research needs to be performed for modulating SHCC mixture suitable for 3D printing. The uniaxial tension behavior showed that the F1.0 mixture failed at lower strain, whereas F1.5 and F1.8 exhibited higher strain performance with multiple micro-cracks occurring.

Petrological Study on the Bulgugsa Acidic Igneous Rocks in Busan Area (부산지역(釜山地域)의 불국사산성화성암류(佛國寺酸性火成岩類)의 암석학적(岩石學的) 연구(硏究))

  • Cha, Moon-Sung
    • Economic and Environmental Geology
    • /
    • v.9 no.2
    • /
    • pp.85-106
    • /
    • 1976
  • The Bulgugsa acidic igneous rocks of the late Cretaceous age are largely distributed in Busan area, which is located in the southeastern corner of the Korean Peninsula. These igneous rocks comprise in ascending order, felsite, dacitic-rhyolitic welded tuffs, granite porphyry and granitic rocks. The former three members represent the early phase of volcanic activities, so that they are named as Jangsan volcanic rocks. The granitic rocks consist of granodiorite, hornblende biotite granite, Kumjongsan granite, fine grained granite, and Daebyen granite, represent the late phase of igneous activities. The Kumjongsan grainte, the largest pluton of the granitic mass, emplaced between two great vertical faults trending NNE. New chemical analyses of 33 rock samples of these acidic rocks are given. Their chemical compositions are generally similar to those of the late Mesozoic acidic igneous rocks of the northern Ashio mountains, and C-Zone granite group of the Ogcheon geosyncline, with their characteristic variation trends of several oxides. Their chemical compositions also show that $Al_2O_3$ is high value, and differentiation index is high, too. Systematically developing joints in Kumjungsan granite are divisible into two types at least. One is the NS-N $20^{\circ}E$ trendirig, $85^{\circ}{\sim}90^{\circ}$ dipping type of joint system which coincides with the trends of distribution of the granite mass and the dikes intruding this granite. Joints of this type may be cooling joints generated as tension cracks. The other is the $N60^{\circ}{\sim}70^{\circ}W$ or $N40^{\circ}{\sim}60^{\circ}E$ trending type of joint systems. It is considered that. joints belonging to this type may be shear joint occurring under the state of south-north tectonic couple acting at the east and west side of the granite mass. Igneous activities of the the Bulgugsa acidic igneous rocks in Busan area was taken place as. follows, formation of the magma reservoir, eruption and intrusion of felsite, consolidation of vents. and increasing vapor pressure in magma reservoir, eruption of pyroclastic flows, caldera collapse, intrusion of granite porphyry, and intrusion of granitic rocks at the latest stage.

  • PDF

Development of Quasi-Conforming Shell Element for the Three Dimensional Construction Stage Analysis of PSC Bridge (PSC 교량의 3차원 시공 중 해석기법을 위한 준적합 쉘 요소 개발)

  • Kim, Ki-Du;Byun, Yun-Joo;Kim, Hyun-Ky;Lomboy, Gilson R.;Suthasupradit, Songsak;Kim, Young-Hoe
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2007
  • The PSC box bridge constructed of concrete, reinforcing bar and tendon is a complex structure that exhibits tension cracks, nonlinear behaviour of steel and time dependent behaviour of concrete. The frame element is commonly used for construction stage analysis PSC bridges. However, the frame element does not show sufficient information when in the curved PSC box bridges. For the case of curved PSC bridges, the deformations in the inner and outer web are different. In this case, different jacking forces are required in the inner and outer webs. However, it is impossible to calculate different jacking forces if we use the frame element for construction stage analysis. In order to overcome this problem, the use of the shell element is essential for a three-dimensional construction stage analysis of PSC bridges. In the following, the formulation of a Quasi-conforming shell element and its application of PSC box girder bridge analysis are presented.

Study on mechanism of macro failure and micro fracture of local nearly horizontal stratum in super-large section and deep buried tunnel

  • Li, Shu-cai;Wang, Jian-hua;Chen, Wei-zhong;Li, Li-ping;Zhang, Qian-qing;He, Peng
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.253-267
    • /
    • 2016
  • The stability of surrounding rock will be poor when the tunnel is excavated through nearly horizontal stratum. In this paper, the instability mechanism of local nearly horizontal stratum in super-large section and deep buried tunnel is revealed by the analysis of the macro failure and micro fracture. A structural model is proposed to explain the mechanics of surrounding rock collapse under the action of stress redistribution and shed light on the macroscopic analytical approach of the stability of surrounding rock. Then, some highly effective formulas applied in the tunnel engineering are developed according to the theory of mixed-mode micro fracture. And well-documented field case is made to demonstrate the effectiveness and accuracy of the proposed analytical methods of mixed-mode fracture. Meanwhile, in order to make the more accurate judgment about yield failure of rock mass, a series of comprehensive failure criteria are formed. In addition, the relationship between the nonlinear failure criterion and $K_I$ and $K_{II}$ of micro fracture is established to make the surrounding rock failure criterion more comprehensive and accurate. Further, the influence of the parameters related to the tension-shear mixed-mode fracture and compression-shear mixed-mode fracture on the propagation of rock crack is analyzed. Results show that ${\sigma}_3$ changes linearly with the change of ${\sigma}_1$. And the change rate is related to ${\beta}$, angle between the cracks and ${\sigma}_1$. The proposed simple analytical approach is economical and efficient, and suitable for the analysis of local nearly horizontal stratum in super-large section and deep buried tunnel.

Shear resistance behaviors of a newly puzzle shape of crestbond rib shear connector: An experimental study

  • Chu, Thi Hai Vinh;Bui, Duc Vinh;Le, Van Phuoc Nhan;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1157-1182
    • /
    • 2016
  • A newly puzzle shape of crestbond rib shear connector is a type of ductile perfobond rib shear connector. This shear connector has some advantages, including relatively easy rebar installation and cutting, as well as the higher shear resistance strength. Thus, this study proposed a newly puzzle shape of crestbond rib with a "${\mho}$" shape, and its shear resistance behaviors and shear strengths were examined using push-out tests. Five main parameters were considered in the push-out specimens to evaluate the effects of shear resistance parameters such as the dimensions of the crestbond rib, transverse rebars in the crestbond dowel, concrete strength, rebar strength, and dowel action on the shear strength. The shear loading test results were used to compare the changes in the shear behaviors, failure modes, and shear strengths. It was found that the concrete strength and number of transverse rebars in the crestbond rib were significantly related to its shear resistance. After the initial bearing resistance behavior of the concrete dowel, a relative slip occurred in all the specimens. However, its rigid behavior to shear loading decreased the ductility of the shear connection. The cross-sectional area of the crestbond rib was also shown to have a minor effect on the shear resistance of the crestbond rib shear connector. The failure mechanism of the crestbond rib shear connector was complex, and included compression, shear, and tension. As a failure mode, a crack was initiated in the middle of the concrete slab in a vertical direction, and propagated with increasing shear load. Then, horizontal cracks occurred and propagated to the front and rear faces of the specimens. Based on the results of this study, a design shear strength equation was proposed and compared with previously suggested equations.

Interfacial properties of composite shotcrete containing sprayed waterproofing membrane

  • Park, Byungkwan;Lee, Chulho;Choi, Soon-Wook;Kang, Tae-Ho;Kim, Jintae;Choi, Myung-Sik;Jeon, Seokwon;Chang, Soo-Ho
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.385-397
    • /
    • 2018
  • This study evaluates the interfacial properties of composite specimens consisting of shotcrete and sprayed waterproofing membrane. Two different membrane prototypes were first produced and tested for their waterproofing ability. Then composite specimens were prepared and their interfacial properties assessed in direct shear and uniaxial compression tests. The direct shear test showed the peak shear strength and shear stiffness of the composites' interface decreased as the membrane layer became thicker. The shear stiffness, a key input parameter for numerical analysis, was estimated to be 0.32-1.74 GPa/m. Shear stress transfer at the interface between the shotcrete and membrane clearly emerged when measuring peak shear strengths (1-3 MPa) under given normal stress conditions of 0.3-1.5 MPa. The failure mechanism was predominantly shear failure at the interface in most composite specimens, and shear failure in the membranes. The uniaxial compression test yielded normal stiffness values for the composite specimens of 5-24 GPa/m. The composite specimens appeared to fail by the compressive force forming transverse tension cracks, mainly around the shotcrete surface perpendicular to the membrane layer. Even though the composite specimens had strength and stiffness values sufficient for shear stress transfer at the interfaces of the two shotcrete layers and the membrane, the sprayed waterproofing membrane should be as thin as possible whilst ensuring waterproofing so as to obtain higher strength and stiffness at the interface.

Horizontal Active Thrusts and Design of GRS-RW System for Distanced Surcharge (상재하중 이격거리를 고려한 GRS-RW 공법의 토압해석 및 설계)

  • 방윤경
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.15-29
    • /
    • 1999
  • This study presents an analytical method of estimating the developed horizontal active thrusts against GRS-RW( Geosynthetic Reinforced Soil Retaining Wall) system adapted to the case of distanced surcharge. In addition, the design charts that could be used for preliminary design of GRS-RW system are presented. The proposed method of analysis uses two body translation mechanism as well as force polygon concept. taking into account the effect of facing's rigidity. Besides. the effect of tension cracks in c-\Phi$ soils, seismic effects and horizontal distance from the back face of wall to uniformly distributed surcharge loadings are also included. The results of horizontal active thrusts obtained from the developed method of analysis are compared with those from Jarquio's modified Boussinesq equation.

  • PDF

Realistic Deformation Analysis of Reinforced Concrete Walls (철근(鐵筋)콘크리트 벽부재(壁部材)의 실제적(實際的)인 변형해석(變形解析))

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.1-10
    • /
    • 1983
  • The deformation and crack width of concrete walls of slabs, plates, panels and shells reinforced by a regular rectangular net of reinforcing bars and subjected to in-plane (membrane) internal forces is analyzed on the basis of a realistic model which takes into account the frictional-dilatant behavior of rough interlocked cracks, the effect of tension stiffening, and the dowel action of bars at crack crossings. Extensive numerical computer studies are carried out, and the reinforcement designs obtained from equilibrium conditions alone on the basis of either the classical frictionless approach or the recent frictional approach are compared in terms of the resulting crack widths. It is found that the use of frictional equilibrium design based on a low friction coefficient leads to a much smaller crack width than the classical frictionless design. The influences of bar diameter and crack spacing on the crack width are also studied. The model allows more realistic deformation analysis of reinforced concrete structures.

  • PDF

Determining Parameters of Dynamic Fracture Process Analysis(DFPA) Code to Simulate Radial Tensile Cracks in Limestone Blast (석회암 내 방사상 발파균열을 예측하기 위한 동적파괴과정 해석법의 입력물성 결정법에 관한 연구)

  • Kim, Hyon-Soo;Kang, Hyeong-Min;Jung, Sang-Sun;Kim, Seung-Kon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.6-13
    • /
    • 2013
  • Recently, complaints or environmental problems caused by the noise and dust generated from crusher of the mine and quarry are emerging. Therefore mining facilities such as crushers and mills have been installed in an underground. In order to facilitate crusher equipments in the underground, excavation of large space is required and then the stability of the large space underground structure is an important issue. In this study, the blast experiments, which use a block of the limestone, are performed. Based on the blast experiments, the numerical model was prepared and simulated using dynamic fracture process analysis code(DFPA) with considering the rising time of applied borehole pressure and microscopic tensile strength variation. Comparing the non-dimensional crack length and no-dimensional tensile strength obtained from blast experiments and numerical analyses, the input parameters of DFPA code for predicting a radial tensile crack in limestone blasting were determined.