• 제목/요약/키워드: Tensile strain hardening

검색결과 259건 처리시간 0.025초

Alloy 82/182 이종금속 용접부 열영향부의 계계적물성치 파악 (Characterization of Mechanical Properties in the Heat Affected Zones of Alloy 82/182 Dissimilar Metal Weld Joint)

  • 김진원;김종성;이경수
    • 한국안전학회지
    • /
    • 제23권6호
    • /
    • pp.28-33
    • /
    • 2008
  • This paper presents the characteristics of mechanical properties within the heat affected zones(HAZs) of dissimilar metal weld joint between SA508 Gr.1a and F3l6 stainless steel(SS) with Alloy 82/182 filler metal. Tensile tests were performed using small-size specimens taken from the heat affected regions close to both fusion lines of weld, and the micro-structures were examined using optical microscope(OM) and transmission microscope(TEM). The results showed that significant gradients of the yield stress(YS), ultimate tensile stress(UTS), and elongations were observed within the HAZ of SA508 Gr.1a. This was attributed to the different microstructures within the HAZ developed during the welding process. In the HAZ of F316 SS, however, the welding effect dominated the YS and elongation rather than UTS. TEM micrographs demonstrated these characteristics of the HAZ of F316 SS was associated with a dislocation-induced strain hardening.

항복점연신이 고려된 유한요소 해석을 통한 고강도강의 변형 거동 연구 (Analysis on Deformation Behavior of High Strength Steel using the Finite Element Method in Conjunction with Constitutive Model Considering Elongation at Yield Point)

  • 윤승채;문만빈;김형섭
    • 대한금속재료학회지
    • /
    • 제48권7호
    • /
    • pp.598-604
    • /
    • 2010
  • Tensile tests are widely used for evaluating mechanical properties of materials including flow curves as well as Young's modulus, yield strength, tensile strength, and yield point elongation. This research aims at analyzing the plastic flow behavior of high strength steels for automotive bodies using the finite element method in conjunction with the viscoplastic model considering the yield point elongation phenomenon. The plastic flow behavior of the high strength steel was successfully predicted, by considering an operating deformation mechanism, in terms of normalization dislocation density, and strain hardening and accumulative damage of high strength steel using the modified constitutive model. In addition, the finite element method is employed to track the properties of the high strength steel pertaining to the deformation histories in a skin pass mill process.

ECAP으로 제조된 초미세립 알루미늄 합금의 동적 변형거동에 미치는 어닐링 온도의 영향 (Effect of Annealing Temperature on Dynamic Deformation Behavior of Ultra-Fine-Grained Aluminum Alloys Fabricated by Equal Channel Angular Pressing)

  • 김양곤;고영건;신동혁;이종수;이성학
    • 대한금속재료학회지
    • /
    • 제46권9호
    • /
    • pp.563-571
    • /
    • 2008
  • The influence of annealing treatment on dynamic deformation behavior of ultra-fine grained aluminum alloys was investigated in this study. After equal-channel angular pressing at $200^{\circ}C$, most of the grains were considerably reduced to nearly equiaxed grains of $0.3{\mu}m$ in size. With an increment of various annealing treatments for 1 hour, resultant microstructures were found to be fairly stable at temperatures up to $200^{\circ}C$, suggesting that static recovery would be dominantly operative, whereas grain growth was pronounced above $250^{\circ}C$. The tensile test results showed that yield and ultimate tensile strengths decreased, but elongation-to-failure and strain hardening rate increased with increasing annealing temperature. The dynamic deformation behavior retrieved with a series of torsional tests was explored with respect to annealed microstructures. Such mechanical response was analyzed in relation to resultant microstructure and fracture mode.

FRP 와이어 보강 콘크리트 공시체의 압축거동 (Axial Behavior of Concrete Cylinders Confined with FRP Wires)

  • 조백순;이종한;최은수
    • 대한토목학회논문집
    • /
    • 제33권5호
    • /
    • pp.1765-1775
    • /
    • 2013
  • 콘크리트 공시체의 압축강도와 연성성능을 향상시키기 위하여 FRP 와이어의 적용을 실험적으로 연구하였다. 와이어 보강겹수와 콘크리트 압축강도의 변화가 고려된 와이어 보강 공시체의 압축실험을 실시하였다. FRP 와이어 보강 공시체 압축실험에서 측정된 축방향변형률, 원주방향변형률, 체적변형률에 의한 와이어 내부 콘크리트의 손상상태를 분석하여 와이어 보강효과를 평가하였다. FRP 와이어 보강 공시체의 응력-변형률 선도는 두 개의 직선구간과 변환구간으로 구성된 것으로 측정되었으며, 균열이후구간에서 응력상승거동하였다. 와이어 보강 공시체의 균열강도와 최대강도는 와이어 보강겹수에 비례하여 증가하는 것으로 평가되었다. 와이어가 3겹 보강된 35 MPa 공시체의 최대강도는 무보강 공시체의 압축강도보다 286% 높게 측정되었다. FRP 와이어 보강 공시체의 내부 콘크리트 파괴형태는 i) 수직균열 또는 경사균열파괴; ii) 수평균열파괴로 구분되었다. 특히, 수평균열파괴는 와이어에 의한 구속약화로 인하여 갑자기 내부 콘크리트가 팽창하는 부분과 와이어가 아직 내부 콘크리트를 효과적으로 구속하는 부분의 전단효과로 발생하였으며, 수평균열은 공시체의 중앙부를 기준으로 여러 면으로 발생하였으며, 와이어에 의한 구속효과가 우수한 공시체에 발생하였다. FRP 와이어 보강 공시체 압축실험에서 와이어 최대파단변형률에 대한 인장파단변형률의 비가 55-90%로 측정되었으며, 평균 69.5%로 나타났다. 이는 일반 FRP 시트 보강 공시체 실험에서 측정된 시트 파단변형률보다 다소 높은 값으로 FRP 와이어 보강 공법의 우수성을 입증한다.

Mechanical behavior of 316L austenitic stainless steel bolts after fire

  • Zhengyi Kong;Bo Yang;Cuiqiang Shi;Xinjie Huang;George Vasdravellis;Quang-Viet Vu;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.281-298
    • /
    • 2024
  • Stainless steel bolts (SSB) are increasingly utilized in bolted steel connections due to their good mechanical performance and excellent corrosion resistance. Fire accidents, which commonly occur in engineering scenarios, pose a significant threat to the safety of steel frames. The post-fire behavior of SSB has a significant influence on the structural integrity of steel frames, and neglecting the effect of temperature can lead to serious accidents in engineering. Therefore, it is important to evaluate the performance of SSB at elevated temperatures and their residual strength after a fire incident. To investigate the mechanical behavior of SSB after fire, 114 bolts with grades A4-70 and A4-80, manufactured from 316L austenitic stainless steel, were subjected to elevated temperatures ranging from 20℃ to 1200℃. Two different cooling methods commonly employed in engineering, namely cooling at ambient temperatures (air cooling) and cooling in water (water cooling), were used to cool the bolts. Tensile tests were performed to examine the influence of elevated temperatures and cooling methods on the mechanical behavior of SSB. The results indicate that the temperature does not significantly affect the Young's modulus and the ultimate strength of SSB. Up to 500℃, the yield strength increases with temperature, but this trend reverses when the temperature exceeds 500℃. In contrast, the ultimate strain shows the opposite trend. The strain hardening exponent is not significantly influenced by the temperature until it reaches 500℃. The cooling methods employed have an insignificant impact on the performance of SSB. When compared to high-strength bolts, 316L austenitic SSB demonstrate superior fire resistance. Design models for the post-fire mechanical behavior of 316L austenitic SSB, encompassing parameters such as the elasticity modulus, yield strength, ultimate strength, ultimate strain, and strain hardening exponent, are proposed, and a more precise stress-strain model is recommended to predict the mechanical behavior of 316L austenitic SSB after a fire incident.

액체로켓 연소기용 구리합금의 열/기계적 특성에 관한 실험적 연구 (Experimental Study on the Physical and Mechanical Properties of a Copper Alloy for Liquid Rocket Combustion Chamber Application)

  • 류철성;백운봉;최환석
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1494-1501
    • /
    • 2006
  • Mechanical and physical properties of a copper alloy for a liquid rocket engine(LRE) combustion chamber liner application were tested at various temperatures. All test specimens were heat treated with the condition they might experience during actual fabrication process of the LRE combustion chamber. Physical properties measured include thermal conductivity, specific heat and thermal expansion data. Uniaxial tension tests were preformed to get mechanical properties at several temperatures ranging from room temperature to 600$^{\circ}C$. The result demonstrated that yield stress and ultimate tensile stress of the copper alloy decreases considerably and strain hardening increases as the result of the heat treatment. Since the LRE combustion chamber operates at higher temperature over 400$^{\circ}C$, the copper alloy can exhibit time-dependent behavior. Strain rate, creep and stress relaxation tests were performed to check the time-dependent behavior of the copper alloy. Strain rate tests revealed that strain rate effect is negligible up to 400$^{\circ}C$ while stress-strain curve is changed at 500$^{\circ}C$ as the strain rate is changed. Creep tests were conducted at 250$^{\circ}C$ and 500$^{\circ}C$ and the secondary creep rate was found to be very small at both temperatures implying that creep effect is negligible for the combustion chamber liner because its operating time is quite short.

Yield strength estimation of X65 and X70 steel pipe with relatively low t/D ratio

  • Kim, Jungho;Kang, Soo-Chang;Kim, Jin-Kook;Song, Junho
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.151-164
    • /
    • 2021
  • During the pipe forming process, a steel plate undergoes inelastic behavior multiple times under a load condition repeating tension and compression in the circumferential direction. It derives local reduction or increase of yield strength within the thickness of steel pipes by the plastic hardening and Bauschinger effect. In this study, a combined hardening model is proposed to effectively predict variations of yield strength in the circumferential direction of API-X65 and X70 steel pipes with relatively low t/D ratio during the forming process, which is expected to experience accumulated plastic strain of 2~3%, the typical Lüder band range in a low-carbon steel. Cyclic tensile tests of API-X65 and X70 steels were performed, and the parameters of the proposed model for the steels were calibrated using the test results. Bending-flattening tests to simulate repeated tension and compression during pipe forming were followed for API-X65 and X70 steels, and the results were compared with those by the proposed model and Zou et al. (2016), in order to verify the process of material model calibration based on tension-compression cyclic test, and the accuracy of the proposed model. Finally, parametric analysis for the yield strength of the steel plate in the circumferential direction of UOE pipe was conducted to investigate the effects of t/D and expansion ratios after O-forming on the yield strength. The results confirmed that the model by Zou et al. (2016) underestimated the yield strength of steel pipe with relatively low t/D ratio, and the parametric analysis showed that the t/D and expansion ratio have a significant impact on the strength of steel pipe.

순수 굽힘 시험기를 이용한 연강 사각관의 굽힘 붕괴에 관한 실험적 연구 (An Experimental Study on Deep Collapse of Steel Tubes under Pure Bending)

  • KiM, C.S.;Chung, T.E.;Kang, S.Y.
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper the bending collapse characteristics of square and rectangular steel tubes were studied with the pure bending test machine which apply pure bending moment without imposing shear and tensile forces. Under pure bending moment, delayed buckling modes occur and depend on test length and shape of section. For delayed mode, the endrgy of bending moment is absorbed by strain hardening energy. The pre- dictions of maximum moment and moment-rotation angle curve from those concepts are in good agreement with experimental observations.

  • PDF

소성불안정성에 의한 관재 하이드로포밍 공정에서의 터짐 불량 예측 (A Prediction of Bursting Failure in Tube Hydroforming Process Based on Plastic Instability)

  • 김상우;김정;박훈재;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.210-213
    • /
    • 2004
  • Based on plastic instability, analytical prediction of bursting failure on tube hydroforming processes under combined internal pressure and independent axial feeding is carried out. Bursting is irrecoverable phenomenon due to local instability under excessive tensile stresses. In order to predict the bursting failure, three different classical necking criteria such as diffuse necking criterion for sheet and tube, local necking criterion for sheet are introduced. The incremental theory of plasticity fur anisotropic material is adopted and then the hydroforming limit and bursting failure diagram with respect to axial feeding and hydraulic pressure are presented. In addition, the influences of the material properties such as anisotropy parameter, strain hardening exponent on bursting pressure are investigated. As results of the above approach, the hydroforming limit in view of bursting failure is verified with experimental results.

  • PDF

시멘트 복합체 내에서 UV처리에 따른 PVA 및 PET섬유의 계면 및 매입인발특성 (Interfacial and Pull-out Properties of PVA and PET Fiber with UV Irradiation in Cementitious Composites)

  • 전에스더;이상수;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.401-404
    • /
    • 2006
  • Much of requirements to the civil and building structures have been changed in accordance with the social and economic progress. Ductility of high performance fiber reinforced cementitious composites(HPFRCCs), which exhibit strain hardening and multiple crackling characteristics under the uniaxial tensile stress is drastically improved. In HPFRCC application, PVA fiber has been dominantly used as a reinforcement because of its excellent alkali resistant nature as well as high strength. But the inherent strong hydrophilicity of PVA fiber promotes the moisture absorption in cement matrix and thus it may cause the corrosion of steel structure. Therefore, it is necessary to control the interfacial adhesion of cement composites. In present study, to control the interfacial adhesion of the cementitious composites reinforced by PVA fiber, UV irradiation of the PVA fiber were performed and their effects on the adhesion property and general characteristics were investigated extensively.

  • PDF