DOI QR코드

DOI QR Code

Axial Behavior of Concrete Cylinders Confined with FRP Wires

FRP 와이어 보강 콘크리트 공시체의 압축거동

  • 조백순 (인제대학교 건설기술연구소 토목도시공학부) ;
  • 이종한 (대구대학교 토목공학과) ;
  • 최은수 (홍익대학교 토목공학과)
  • Received : 2013.05.28
  • Accepted : 2013.07.16
  • Published : 2013.09.30

Abstract

The application of FRP wire as a mean of improving strength and ductility capacity of concrete cylinders under axial compressive load through confinement is investigated experimentally in this study. An experimental investigation involves axial compressive test of three confining amounts of FRP wire and three concrete compressive strengths. The effectiveness of FRP wire confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, circumferential, and volumetric strains. The axial stress-strain relations of FRP wire confined concrete showed bilinear behavior with transition region. It showed strain-hardening behavior in the post-cracking region. The load carrying capacity was linearly increased with increasing of the amount of FRP wire. The ultimate strength of the 35 MPa specimen confined with 3 layer of FRP wire was increased by 286% compared to control one. When the concrete were effectively confined with FRP wire, horizontal cracks were formed by shearing. It was developed from sudden expansion of the concrete due to confinement ruptures at one side while the FRP wire was still working in hindering expansion of concrete at the other side of the crack. The FRP wire failure strains obtained from FRP wire confined concrete tests were 55~90%, average 69.5%, of the FRP wire ultimate uniaxial tensile strain. It was as high as any other FRP confined method. The magnitude of FRP wire failure strain was related to the FRP wire effectiveness.

콘크리트 공시체의 압축강도와 연성성능을 향상시키기 위하여 FRP 와이어의 적용을 실험적으로 연구하였다. 와이어 보강겹수와 콘크리트 압축강도의 변화가 고려된 와이어 보강 공시체의 압축실험을 실시하였다. FRP 와이어 보강 공시체 압축실험에서 측정된 축방향변형률, 원주방향변형률, 체적변형률에 의한 와이어 내부 콘크리트의 손상상태를 분석하여 와이어 보강효과를 평가하였다. FRP 와이어 보강 공시체의 응력-변형률 선도는 두 개의 직선구간과 변환구간으로 구성된 것으로 측정되었으며, 균열이후구간에서 응력상승거동하였다. 와이어 보강 공시체의 균열강도와 최대강도는 와이어 보강겹수에 비례하여 증가하는 것으로 평가되었다. 와이어가 3겹 보강된 35 MPa 공시체의 최대강도는 무보강 공시체의 압축강도보다 286% 높게 측정되었다. FRP 와이어 보강 공시체의 내부 콘크리트 파괴형태는 i) 수직균열 또는 경사균열파괴; ii) 수평균열파괴로 구분되었다. 특히, 수평균열파괴는 와이어에 의한 구속약화로 인하여 갑자기 내부 콘크리트가 팽창하는 부분과 와이어가 아직 내부 콘크리트를 효과적으로 구속하는 부분의 전단효과로 발생하였으며, 수평균열은 공시체의 중앙부를 기준으로 여러 면으로 발생하였으며, 와이어에 의한 구속효과가 우수한 공시체에 발생하였다. FRP 와이어 보강 공시체 압축실험에서 와이어 최대파단변형률에 대한 인장파단변형률의 비가 55-90%로 측정되었으며, 평균 69.5%로 나타났다. 이는 일반 FRP 시트 보강 공시체 실험에서 측정된 시트 파단변형률보다 다소 높은 값으로 FRP 와이어 보강 공법의 우수성을 입증한다.

Keywords

References

  1. Bencardino, F., Spadea, G. and Swamy, N. (2002). "Strength and ductility of reinforced concrete beams externally reinforced with carbon fiber fabric." ACI Structural Journal, Vol. 99, No. 2, pp. 163-171.
  2. Bisby, L. A., Dent, A. J. S. and Green, M. (2005). "Comparison of confinement models for fiber-reinforced polymer-wrapped concrete." ACI Structural Journal, Vol. 102, No. 1, pp. 62-72.
  3. Brena, S. F., Bramblett, R. M., Wood, S. L. and Kreger, M. E. (2003). "Increasing flexural capacity of reinforced concrete beams using carbon fiber-reinforced polymer composites." ACI Structural Journal, Vol. 100, No. 1, pp. 36-46.
  4. Chaallal, O., Hussan, M. and Shahawy, M. (2003). "Confinement model for axially loaded short rectangular columns strengthened with fiber-reinforced polymer wrapping." ACI Structural Journal, Vol. 100, No. 2, pp. 215-221.
  5. Carey, S. A. and Harries, K. A. (2005). "Axial behavior and modeling if confined small-, medium-, and larger-scale circular sections with carbon fiber-reinforced polymer jacket." ACI Structural Journal, Vol. 102, No. 4, pp. 596-604.
  6. Cho, B. S., Choi, E., Chung, Y. S. and Kim, Y. W. (2011). "Axial Load Behavior of Concrete Cylinders Confined with Fiber-Sheet and Steel-Plate Composites Plates." Korean Society of Civil Engineering, Vol. 31, No. 4A, pp. 331-340 (in Korean).
  7. Cho, B. S., Kim, S. D., Back, S. Y., Choi, E. and Choi, Y. J. (2010). "Moment capacity of reinforced concrete members strengthened with FRP." Computational Structural Engineering Institute of Korea, Vol. 23, No. 03, pp. 315-323 (in Korean).
  8. Choi, E., Chung, Y. S., Park, J. and Cho, B. S. (2010). "Behavior of reinforced concrete columns confined by new steel-jacketing method." ACI Structural Journal, Vol. 107, No. 6, pp. 654-662.
  9. Choi, E., Park, J., Nam, T. H. and Yoon, S. J. (2009). "A new steel jacketing method for rc columns." Magazine of Concrete Research, Vol. 61, No. 10, pp. 787-796. https://doi.org/10.1680/macr.2008.61.10.787
  10. Demers, M. and Naela, K. W. (1999). "Confinement of reinforced concrete columns with fibre-reinforced composite sheets−an experimental study." Canadian Journal of Civil Engineering, Vol. 26, pp. 226-241. https://doi.org/10.1139/l98-067
  11. El-Refaie, S. A., Ashour, A. F. and Garrity, S. W. (2003). "Sagging and hogging strengthening of continuous reinforced concrete beams using carbon fiber-reinforced polymer sheets." ACI Structural Journal, Vol. 100, No. 4, pp. 446-453.
  12. Harries, K. A. and Carey, S. A. (2003). "Shape and gap effects on the behavior of variably confined concrete." Cement and Concrete Research, Vol. 33, pp. 881-890. https://doi.org/10.1016/S0008-8846(02)01085-2
  13. Harries, K. A. and Kharel, G. (2002). "Behavior and modeling of concrete subject to variable confining pressure." ACI Material Journal, Vol. 99, No. 2, pp. 180-189.
  14. Lam, L. and Teng, J. G. (2002). "Strength models for fiber-reinforced plastic-confined concrete." Journal of Structural Engineering, Vol. 128, No. 5, pp. 612-623. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:5(612)
  15. Lam, L. and Teng, J. G. (2003). "Design-oriented stress-strain model for FRP-confined concrete." Construction and Building Materials, Vol. 17, pp. 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X
  16. Matthys, S., Toutanji, H., Audenaert, K. and Taerwe, L. (2005). "Axial load behavior of lager-scale columns confined with fiber-reinforced polymer composite." ACI Structural Journal, Vol. 102, No. 2, pp. 258-267.
  17. Mirmiran, A. and Shahawy, M. (1997). "Behavior of concrete confined by fiber composites." Journal of Structural Engineering, ASCE, Vol. 123, No. 5, pp. 583-590. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583)
  18. Moran, D. A. and Pantelides, C. P. (2002). "Stress-strain model for fiber-reinforced polymer-confined concrete." Journal of Composites for Construction, ASCE, Vol. 6, No. 4, pp. 233-240. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:4(233)
  19. Pantelides, C. P. and Yan, Z. (2007). "Confined model of concrete with externally bonded FRP jackets or posttensioned FRP shells." Journal of Structural Engineering, ASCE, Vol. 133, No. 9, pp. 1288-1296. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1288)
  20. Richart, F. E., Brandtzaeg, A. and Brown, R. L. (1928). A study of the failure of concrete under combined compressive stresses, Bulletin No. 185, Engineering Experiment Station, University of Illinois at Urbana Champaign, Illinois.
  21. Saenz, N. and Pantelides, C. P. (2007). "Strain-basement confinement model for FRP-confined concrete." Journal of Structural Engineering, ASCE, Vol. 133, No. 6, pp. 825-833. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(825)
  22. Spoelstra, M. R. and Monti, G. (1999). "FRP-confined concrete model." Journal of Composites for Construction, ASCE, Vol. 3, No. 3, pp. 143-150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)
  23. Tautanji, H. A. (1999). "Stress-strain characteristic of concrete columns externally confined with advanced fiber composite sheet." ACI Materials Journal, Vol. 96, No. 3, pp. 397-404.
  24. Teng, J. G. and Lam, L. (2004). "Behavior and modeling of fiber reinforced polymer-confined concrete." Journal of Structural Engineering, ASCE, Vol. 130, No. 11, pp. 1713-1723. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1713)
  25. Xiao, Y. and Ma, R. (1997). "Seismic retrofit of RC circular columns using prefabricated composite jacketing." Journal of Structural Engineering, ASCE, Vol. 123, No. 1, pp. 1357-1364. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1357)
  26. Xiao, Y. and Wu, H. (2000). "Compressive behavior of concrete confined by carbon fiber composite jackets." Journal of Materials in Civil Engineering, ASCE, Vol. 12, No. 2, pp. 139-146. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139)