Effect of Annealing Temperature on Dynamic Deformation Behavior of Ultra-Fine-Grained Aluminum Alloys Fabricated by Equal Channel Angular Pressing

ECAP으로 제조된 초미세립 알루미늄 합금의 동적 변형거동에 미치는 어닐링 온도의 영향

  • Kim, Yang Gon (Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Ko, Young Gun (Department of Materials Science and Engineering, Massachusetts Institute of Technology) ;
  • Shin, Dong Hyuk (Department of Metallurgy and Materials Science,Hanyang University) ;
  • Lee, Chong Soo (Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Lee, Sunghak (Department of Materials Science and Engineering, Pohang University of Science and Technology)
  • 김양곤 (포항공과대학교 신소재공학과) ;
  • 고영건 (메사추세츠 공과대학 재료공학과) ;
  • 신동혁 (한양대학교 금속재료공학과) ;
  • 이종수 (포항공과대학교 신소재공학과) ;
  • 이성학 (포항공과대학교 신소재공학과)
  • Received : 2008.06.24
  • Published : 2008.09.25

Abstract

The influence of annealing treatment on dynamic deformation behavior of ultra-fine grained aluminum alloys was investigated in this study. After equal-channel angular pressing at $200^{\circ}C$, most of the grains were considerably reduced to nearly equiaxed grains of $0.3{\mu}m$ in size. With an increment of various annealing treatments for 1 hour, resultant microstructures were found to be fairly stable at temperatures up to $200^{\circ}C$, suggesting that static recovery would be dominantly operative, whereas grain growth was pronounced above $250^{\circ}C$. The tensile test results showed that yield and ultimate tensile strengths decreased, but elongation-to-failure and strain hardening rate increased with increasing annealing temperature. The dynamic deformation behavior retrieved with a series of torsional tests was explored with respect to annealed microstructures. Such mechanical response was analyzed in relation to resultant microstructure and fracture mode.

Keywords

Acknowledgement

Supported by : 과학기술부, 한국학술진흥재단

References

  1. D. H. Shin, B. C. Kim, Y. S. Kim, and K. T. Park, Acta Mater. 48, 2247 (2000) https://doi.org/10.1016/S1359-6454(00)00028-8
  2. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauser, and Y.T. Zhu, JOM 58, 33 (2006)
  3. R. Z. Valiev, and T. G. Langdon, Prog. Mater. Sci. 51, 881 (2006) https://doi.org/10.1016/j.pmatsci.2006.02.003
  4. D. H. Shin, Y. S. Kim, and E. J. Lavernia, Acta Mater. 49, 2387(2000) https://doi.org/10.1016/S1359-6454(01)00165-3
  5. C. C. Koch, D. G. Morris, K. Lu, and A. Inoue, Mater. Res. Soc. Bull. 24, 54 (1999)
  6. P. G. Sanders, J. A. Eastman, and J. R. Weertman, Acta Mater. 45, 4019 (1997) https://doi.org/10.1016/S1359-6454(97)00092-X
  7. Y. G. Kim, B. Hwang, S. Lee, W. G. Kim, and D. H. Shin, Metall. Mater. Trans. A36, 2947 (2005)
  8. Y. Wang, M. Chen, F. Zhou, and E. Ma, Nature 419, 912 (2002) https://doi.org/10.1038/nature01133
  9. K. T. Park and D. H. Shin, Metall. Mater. Trans. 33A, 705 (2002)
  10. Y. Wang and E. Ma, Acta Mater. 52, 1699 (2004) https://doi.org/10.1016/j.actamat.2003.12.022
  11. A. Marchand and J. Duffy, J. Mech. Phys. Solids 36, 252 (1988)
  12. C. G. Lee, K. J. Kim, S. Lee, and K. Cho, Metall. Trans. 29A, 469 (1998)
  13. L. Dupuy and J. J. Blandin, Acta Mater. 50, 3251 (2002)
  14. Y.G. Ko, D. H. Shin, K. T. Park, and C. S. Lee, Mater. Sci. Eng. A449-451, 756 (2007)
  15. B. Hwang, H. S. Lee, Y. G. Kim, S. Lee, B. D. Ahn, D. H. Shin, and C. G. Lee, Metall. Mater. Trans. 36A, 398 (2005)
  16. R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, Mater. Sci. Eng. A168, 141 (1993)
  17. R. Kaibyshev, F. Musin, D. R. Lesuer, and T. G. Nieh, Mater. Sci. Eng. A342, 169 (2003)
  18. R. Z. Valiev, Y. V. Ivanisenko, E. F. Rauch, and B. Baudelet, Acta Mater. 44, 4705 (1996) https://doi.org/10.1016/S1359-6454(96)00156-5
  19. K. T. Park, Y. S. Kim, J. K. Lee, and D. H. Shin, Mater. Sci. Eng. A293, 165 (2000)
  20. Y. G. Ko, D. H. Shin, K. T. Park, and C. S. Lee, Scripta Mater. 54, 1785 (2006) https://doi.org/10.1016/j.scriptamat.2006.01.034
  21. J. Languillaume, G. Kapelski, and B. Baudelet, Acta Mater. 45, 1201 (1997) https://doi.org/10.1016/S1359-6454(96)00216-9
  22. T. Mukai, M. Kawazoe, and K. Higashi, Nanostr. Mater. 10, 755 (1998) https://doi.org/10.1016/S0965-9773(98)00113-5
  23. C. Fan and A. Inoue, Appl. Phys. Lett. 77, 46 (2000) https://doi.org/10.1063/1.126872
  24. K. Cho, S. Lee, S. R. Nutt, and J. Duffy, Acta Mater. 41, 923 (1993) https://doi.org/10.1016/0956-7151(93)90026-O
  25. M. A. Meyers, Y. B. Xu, Q. Xue, M. T. Perez-Prado, and T. R. McNelley, Acta Mater. 51, 1307 (2003) https://doi.org/10.1016/S1359-6454(02)00526-8
  26. B. Hwang, Y. G. Kim, S. Lee, D. Y. Hwang, and D. H. Shin, Metall. Mater. Trans. 38A, 3007 (2007)
  27. A. S. Khan and R. Liang, Inter. J. Plast. 15, 1089 (1999) https://doi.org/10.1016/S0749-6419(99)00030-3
  28. J. R. Davis, Aluminum and Aluminum Alloys, ASM Intern. (1993)