• Title/Summary/Keyword: Tensile performance

Search Result 1,492, Processing Time 0.031 seconds

Analysis of Thermomechanical Properties Considering the Thermal Expansion Anisotropy of Membrane-Type Fiber-Reinforced Composite Material (멤브레인 형 섬유강화 복합재료의 열팽창 이방성을 고려한 열 기계적 특성 분석)

  • Jeong, Yeon-Jae;Kim, Hee-Tae;Kim, Jeong-Dae;Oh, Hoon-Gyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.17-23
    • /
    • 2021
  • The membrane-type Liquefied Natural Gas (LNG) cargo tank is equipped with a double barrier to seal the LNG, of which the secondary barrier serves to prevent LNG leakage and mainly uses fiber-reinforced composite materials. However, the composite materials have thermal expansion anisotropy, which deteriorates shape distortion and mechanical performance due to repeated thermal loads caused by temperature changes between cryogenic and ambient during the unloading of LNG. Therefore, in this study, the longitudinal thermal expansion characteristics of the composite materials were obtained using a vertical thermo-mechanical analyzer, and the elastic modulus was obtained through the tensile test for each temperature to perform thermal load analysis for each direction. This is considered that it is useful to secure reliability from the viewpoint of the design of materials for a LNG cargo hold.

Evaluation of Mechanical and Vibration Characteristics of Laminated Damping Aluminum Panel for Automobile Components (자동차 부품용 알루미늄 접합 제진 패널의 기계적 특성 및 진동 특성 평가)

  • Bae, Sung-Youl;Bae, Ki-Man;Kim, Yun-Hae
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.113-119
    • /
    • 2019
  • The objective of this research is to study the mechanical and vibration characteristics of vibration damping aluminum panels for automotive parts. For this purpose, the test and simulation results of aluminum-resin hybrid materials and aluminum sheet materials were compared. Tensile strength and elastic modulus of the hybrid material were approximately 10% lower than aluminum sheet. Also, it was showed that the hybrid material have lower natural frequency than aluminum sheet, and it was confirmed that loss factor increases as the thickness of resin increases. Finally, it is confirmed that the test results and the analysis results are similar with each other and the performance prediction of the materials are possible by FEA.

Microstructures and Characterization of Al-Si-Mg Alloy Processed by Selective Laser Melting with Post-Heat-treatment (선택적 레이저 용융공정으로 제조된 Al-Si-Mg 합금의 열처리에 따른 미세조직 및 특성평가)

  • Lee, Gi Seung;Eom, Yeong Seong;Kim, Kyung Tae;Kim, Byoung Kee;Yu, Ji Hun
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.138-145
    • /
    • 2019
  • In this study, Al-Si-Mg alloys are additively manufactured using a selective laser melting (SLM) process from AlSi10Mg powders prepared from a gas-atomization process. The processing parameters such as laser scan speed and laser power are investigated for 3D printing of Al-Si-Mg alloys. The laser scan speeds vary from 100 to 2000 mm/s at the laser power of 180 and 270 W, respectively, to achieve optimized densification of the Al-Si-Mg alloy. It is observed that the relative density of the Al-Si-Mg alloy reaches a peak value of 99% at 1600 mm/s for 180 W and at 2000 mm/s for 270W. The surface morphologies of the both Al-Si-Mg alloy samples at these conditions show significantly reduced porosities compared to those of other samples. The increase in hardness of as-built Al-Si-Mg alloy with increasing scan speed and laser power is analyzed due to high relative density. Furthermore, it was found that cooling conditions after the heat-treatment for homogenization results in the change of dispersion status of Si phases in the Al-Si matrix but also affects tensile behaviors of Al-Si-Mg alloys. These results indicate that combination between SLM processing parameters and post-heat treatment should be considered a key factor to achieve optimized Al-Si alloy performance.

Effect of Porosity on Mechanical Anisotropy of 316L Austenitic Stainless Steel Additively Manufactured by Selective Laser Melting (선택적 레이저 용융법으로 제조한 316L 스테인리스강의 기계적 이방성에 미치는 기공의 영향)

  • Park, Jeong Min;Jeon, Jin Myoung;Kim, Jung Gi;Seong, Yujin;Park, Sun Hong;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.475-481
    • /
    • 2018
  • Selective laser melting (SLM), a type of additive manufacturing (AM) technology, leads a global manufacturing trend by enabling the design of geometrically complex products with topology optimization for optimized performance. Using this method, three-dimensional (3D) computer-aided design (CAD) data components can be built up directly in a layer-by-layer fashion using a high-energy laser beam for the selective melting and rapid solidification of thin layers of metallic powders. Although there are considerable expectations that this novel process will overcome many traditional manufacturing process limits, some issues still exist in applying the SLM process to diverse metallic materials, particularly regarding the formation of porosity. This is a major processing-induced phenomenon, and frequently observed in almost all SLM-processed metallic components. In this study, we investigate the mechanical anisotropy of SLM-produced 316L stainless steel based on microstructural factors and highly-oriented porosity. Tensile tests are performed to investigate the microstructure and porosity effects on mechanical anisotropy in terms of both strength and ductility.

Fabrication of Stretchable Ag Nanowire Electrode and its Electrochromic Application (신축성있는 Ag 나노와이어 전극의 제조 및 전기변색 응용)

  • Lee, Jin-Young;Han, Song-Yi;Nah, Yoon-Chae;Park, Jongwoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.87-91
    • /
    • 2019
  • We report on stretchable electrochromic films of poly(3-hexylthiophene) (P3HT) fabricated on silver nanowire (AgNW) electrodes. AgNWs electrodes are prepared on polydimethylsiloxane (PDMS) substrates using a spray coater for stretchable electrochromic applications. On top of the AgNW electrode, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is introduced to ensure a stable resistance over the electrode under broad strain range by effectively suppressing the protrusion of AgNWs from PDMS. This bilayer electrode exhibits a high performance as a stretchable substrate in terms of sheet resistance increment by a factor of 1.6, tensile strain change to 40 %, and stretching cycles to 100 cycles. Furthermore, P3HT film spin-coated on the bilayer electrode shows a stable electrochromic coloration within an applied voltage, with a color contrast of 28.6 %, response time of 4-5 sec, and a coloration efficiency of $91.0cm^2/C$. These findings indicate that AgNWs/PEDOT:PSS bilayer on PDMS substrate electrode is highly suitable for transparent and stretchable electrochromic devices.

A Study on Crack Healing Properties of Cement Composites Mixed with Self-healing Microcapsules (자기치유 마이크로 캡슐을 혼합한 시멘트 복합재료의 품질 및 균열 치유 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Kim, Cheol-Gyu;Nam, Eun-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.113-121
    • /
    • 2019
  • In this study, self - healing microcapsules which can be mixed directly with cement composites were prepared, and the quality and crack healing performance of cement composites with self - healing microcapsules were evaluated. In the past, it has been focused on evaluating self-healing capsules and crack healing properties. Therefore, self - healing microcapsules have been studied for their effect on the quality of cement composites when mixed with cement composites. The table flow and the air flow rate of the cement composite material mixed with self-healing microcapsules were found to have no significant influence on table flow and air volume regardless of mixing ratio. Compressive strength and splitting tensile strength tended to decrease with increasing capsule mixing ratio. As a result of evaluation of crack healing properties according to water flow, initial water permeability decreased, and reaction products were generated over time and cracks were healed.

Development of the CFRP Automobile Parts Using the Joint Structure of the Dissimilar Material (결합부 강화구조용 탄소복합재 자동차 부품 개발)

  • Ko, Kwan Ho;Lee, Min Gu;Huh, Mongyoung
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.392-397
    • /
    • 2018
  • In this study, the development purpose is to replace steel Tie Rod of commercial vehicle to the carbon composite by a braiding process. CFRP tie rod was designed to meet the performance requirements of existing products by designing the cross section of the core for braiding weaving and the structural design of the joint between the core and the carbon fiber. The specimens were fabricated by braiding method and applied to structural analysis through test evaluation. The manufacturing process proceeded from braiding to infusion through post-curing process. The test evaluation of the final product was satisfactorily carried out by sequentially performing tensile test, torsion test, compression test and fatigue test. In addition, the weight of CFRP tie rod could be reduced by about 37% compared to existing products.

Mechanical and Biological Characteristics of Reinforced 3D Printing Filament Composites with Agricultural By-product

  • Kim, Hye-Been;Seo, Yu-Ri;Chang, Kyeong-Je;Park, Sang-Bae;Seonwoo, Hoon;Kim, Jin-Woo;Kim, Jangho;Lim, Ki-Taek
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.233-241
    • /
    • 2017
  • Scaffolds of cell substrates are biophysical platforms for cell attachment, proliferation, and differentiation. They ultimately play a leading-edge role in the regeneration of tissues. Recent studies have shown the potential of bioactive scaffolds (i.e., osteo-inductive) through 3D printing. In this study, rice bran-derived biocomposite was fabricated for fused deposition modeling (FDM)-based 3D printing as a potential bone-graft analogue. Rice bran by-product was blended with poly caprolactone (PCL), a synthetic commercial biodegradable polymer. An extruder with extrusion process molding was adopted to manufacture the newly blended "green material." Processing conditions affected the performance of these blends. Bio-filament composite was characterized using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX). Mechanical characterization of bio-filament composite was carried out to determine stress-strain and compressive strength. Biological behaviors of bio-filament composites were also investigated by assessing cell cytotoxicity and water contact angle. EDX results of bio-filament composites indicated the presence of organic compounds. These bio-filament composites were found to have higher tensile strength than conventional PCL filament. They exhibited positive response in cytotoxicity. Biological analysis revealed better compatibility of r-PCL with rice bran. Such rice bran blended bio-filament composite was found to have higher elongation and strength compared to control PCL.

A comprehensively overall track-bridge interaction study on multi-span simply supported beam bridges with longitudinal continuous ballastless slab track

  • Su, Miao;Yang, Yiyun;Pan, Rensheng
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.163-174
    • /
    • 2021
  • Track-bridge interaction has become an essential part in the design of bridges and rails in terms of modern railways. As a unique ballastless slab track, the longitudinal continuous slab track (LCST) or referred to as the China railway track system Type-II (CRTS II) slab track, demonstrates a complex force mechanism. Therefore, a comprehensive track-bridge interaction study between multi-span simply supported beam bridges and the LCST is presented in this work. In specific, we have developed an integrated finite element model to investigate the overall interaction effects of the LCST-bridge system subjected to the actions of temperature changes, traffic loads, and braking forces. In that place, the deformation patterns of the track and bridge, and the distributions of longitudinal forces and the interfacial shear stress are studied. Our results show that the additional rail stress has been reduced under various loads and the rail's deformation has become much smoother after the transition of the two continuous structural layers of the LCST. However, the influence of the temperature difference of bridges is significant and cannot be ignored as this action can bend the bridge like the traffic load. The uniform temperature change causes the tensile stress of the concrete track structure and further induce cracks in them. Additionally, the influences of the friction coefficient of the sliding layer and the interfacial bond characteristics on the LCST's performance are discussed. The systematic study presented in this work may have some potential impacts on the understanding of the overall mechanical behavior of the LCST-bridge system.

Changes in Pain Following the Different Intensity of the Stretching and Types of Physical Stress

  • Lim, Woo-taek
    • Physical Therapy Korea
    • /
    • v.26 no.4
    • /
    • pp.63-69
    • /
    • 2019
  • Background: Both the rapid concentric and eccentric contractions during exercise repeatedly impose excessive stress on muscle tissue. The hamstring muscles are very susceptible to injury due to the tensile stress. Various interventions are currently being undertaken to prevent strain injury before exercise. Stretching is the most common method and is known to have a positive effect on flexibility and muscle performance. However, relatively few studies have investigated the potential negative factors of stretching. Objects: The purpose of this study was to examine changes in pain following the different intensity of the stretching and types of physical stress. Methods: The subjects were divided into three groups based on the intensity of stretching: 100% (S100), 75% (S75), and 50% (S50) of the measured force at the point of discomfort in static stretching and 100% (P100), 75% (P75), and 50% (P50) of the maximum voluntary isometric contraction in Proprioceptive Neuromuscular Facilitation (PNF) stretching. The pain individual subjects perceived after stretching was measured via a Visual Analog Scale (VAS) and compared between the groups Results: Despite the decrease in the intensity of static stretching, no decrease in VAS value was observed. In PNF stretching, a significant decrease was observed at P50 compared to P100. S100 was significantly higher than P75 and P50. Conclusion: Previous studies have shown that PNF has a superior or the same effect on flexibility in comparison with static stretching. This effect was maintained even in moderate intensity. PNF stretching performed under moderate rather than high intensive static stretching, which causes pain and discomfort, might be recommended in clinical settings.