• Title/Summary/Keyword: Tendon Driven Mechanism

Search Result 11, Processing Time 0.022 seconds

Generalized Graph Representation of Tendon Driven Robot Mechanism (텐던 구동 로봇 메커니즘의 일반화된 그래프 표현)

  • Cho, Youngsu;Cheong, Joono;Kim, Doohyung
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.178-184
    • /
    • 2014
  • Tendon driven robot mechanisms have many advantages such as allowing miniaturization and light-weight designs and/or enhancing flexibility in the design of structures. When designing or analyzing tendon driven mechanisms, it is important to determine how the tendons should be connected and whether the designed mechanism is easily controllable. Graph representation is useful to view and analyze such tendon driven mechanisms that are complicatedly interconnected between mechanical elements. In this paper, we propose a method of generalized graph representation that provides us with an intuitive analysis tool not only for tendon driven manipulators, but also various other kinds of mechanical systems which are combined with tendons. This method leads us to easily obtain structure matrix - which is the one of the most important steps in analyzing tendon driven mechanisms.

Stiffness Analysis of Spring Mechanism for Semi-Automatic Gripper Motion of Tendon-Driven Remote Manipulator (와이어 구동방식 원격조작기용 그리퍼의 반자동 파지 및 해제 동작을 위한 스프링 강성 분석)

  • Yu, Seung-Nam;Lee, Jong-Kwang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1405-1411
    • /
    • 2012
  • Remote handling manipulators are widely used for performing hazardous tasks, and it is essential to ensure the reliable performance of such systems. Toward this end, tendon-driven mechanisms are adopted in such systems to reduce the weight of the distal parts of the manipulator while maintaining the handling performance. In this study, several approaches for the design of a gripper system for a tendon-driven remote handling system are introduced. Basically, this gripper has an underactuated spring mechanism that is combined with a slave manipulator triggered by a master operator. Based on the requirements under the specified tendon-driven mechanism, the connecting position of the spring system on the gripper mechanism and kinematic influence coefficient (KIC) analysis are performed. As a result, a suitable combination of components for the proper design of the target system is presented and verified.

Tendon-driven Adaptive Robot Hand (와이어 기반의 적응형 로봇 핸드)

  • Yu, Hong-Seon;Kim, Min-Cheol;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.258-263
    • /
    • 2014
  • An adaptive robot hand (AR-Hand) has a stable grasp of different objects in unstructured environments. In this study, we propose an AR-Hand based on a tendon-driven mechanism which consists of 4 fingers and 12 DOFs. It weighs 0.5 kg and can grasp an object up to 1 kg. This hand based on the adaptive grasp mechanism is able to provide a stable grasp without a complex control algorithm or sensor system. The fingers are driven by simple tendon structures with each finger capable of adaptively grasping the objects. This paper presents a method to decide the joint stiffness. The adaptive grasping is verified by various grasping experiments involving objects with different shapes and sizes.

Parameter Estimation of a Friction Model for a Tendon-sheath Mechanism (텐던 구동 시스템의 마찰 모델 파라미터 추정)

  • Jeoung, Haeseong;Lee, Jeongjun;Kim, Namwook
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.190-196
    • /
    • 2020
  • Mechanical systems using tendon-driven actuators have been widely used for bionic robot arms because not only the tendon based actuating system enables the design of robot arm to be very efficient, but also the system is very similar to the mechanism of the human body's operation. The tendon-driven actuator, however, has a drawback caused by the friction force of the sheath. Controlling the system without considering the friction force between the sheath and the tendon could result in a failure to achieve the desired dynamic behaviors. In this study, a mathematical model was introduced to determine the friction force that is changed according to the geometrical pathway of the tendon-sheath, and the model parameters for the friction model were estimated by analyzing the data obtained from dedicated tests designed for evaluating the friction forces. Based on the results, it is possible to appropriately predict the friction force by using the information on the pathway of the tendon.

Design of Biomimetic Hand Prosthesis with Tendon-driven Five Fingers (생체모방형 건구동식 의수의 설계)

  • Jung, Sung-Yoon;Kang, Sung-Kyun;Bae, Ju-Hwan;Moon, In-Hyuk
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.205-212
    • /
    • 2009
  • This paper proposes a biomimetic hand prosthesis with tendon-driven five fingers. Each finger is composed of a distal-middle phalange, a proximal phalange and a metacarpal bone, which are connected to a link mechanism. The finger flexion is a resultant motion by pulling a wire to serve as a tendon, but the finger extension is performed by an elastic mechanism composed of a restoration spring. The designed hand prosthesis with tendon-driven five fingers has totally six degrees of freedom. But its weight is merely 400.73g. The hand can perform various hand functions such as the grasping and the hand postures. From experimental results, we show that the proposed hand prosthesis is useful to amputees as a prosthetic hand.

Design and Control of a Novel Tendon-driven Exoskeletal Power Assistive Device (새로운 와이어 구동방식 외골격 보조기의 설계 및 제어)

  • Kong Kyoung-chul;Jeon Doyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.936-942
    • /
    • 2005
  • Recently the exoskeletal power assistive equipment which is a kind of wearable robot has been widely developed to help the human body motion. For the elderly people and patients, however, some limits exist due to the weight and volume of the equipments. As a feasible solution, a tendon-driven exoskeletal power assistive device fur the lower body, and caster walker are proposed in this research. Since the caster walker carries the heavy items, the weight and volume of the wearable exoskeleton are minimized. The key control is used to generate the joint torque required to assist motions such as sitting, standing and walking. Experiments were performed for several motions and the EMG sensors were used to measure the magnitude of assistance. When the motion of sitting down and standing up was compared with and without wearing the proposed device, the $25\%$ assistance was acquired.

A Study on Design of Underactuated Robot Hand driven by Shape Memory Alloy (형상기억합금 Underactuated 로봇 핸드의 설계에 관한 연구)

  • Kim, Gwang-Ho;Shin, Sang-Ho;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.51-57
    • /
    • 2011
  • The lightweight and compact actuator with high power is required to perform motion with multiple degrees of freedom. To reduce the size and inertia of a robot manipulator, the mechanical transmission system is used. The shape memory alloy(SMA) is similar to the muscle-tendon-bone network of a human hand. However, there are some drawback and nonlinearity, such as the hysteresis and the stress dependence. In this paper, the design of the underactuated robot hand is studied. The 3-finger dexterous hand is driven by the SMA actuator using segmental mechanism. This digital approach enables to overcome the nonlinearity of SMA wire. The translational displacement of SMA actuator required to bend a phalanx of the underactuated robot hand is estimated and the bending angle of the underactuated robot hand according to input displacement of SMA actuator is predicted by the multi-body dynamic analysis.

Twisted String-based Upper Limb Exoskeleton (줄꼬임에 기반한 상지 외골격 로봇)

  • Lee, Seung-Jun;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.960-966
    • /
    • 2016
  • This paper proposes a new concept of a soft and wearable upper-limb exoskeleton. A novel actuation principle, called the twisted string actuation principle, is implemented to make it lightweight, soft, and therefore easily wearable. Its power transmission mechanism and harness are designed to be soft and wearable, yet have enough control accuracy for rehabilitation. In addition to force transmission optimization, a speed enlargement mechanism is newly introduced in order to increase the contraction speed of the twisted string actuation mechanism by sacrificing the unnecessarily large gear reduction ratio of the twisted string mechanism. A prototype has been tested for mirroring therapy, and the feasibility of the proposed mechanism has been shown through a sufficiently accurate tracking performance.

Improvement in the Control Performance of Instruments used for Minimally Invasive Surgery (최소침습술을 위한 의료용 인스트루먼트의 동작 성능 향상)

  • Park, Hyeonjun;Won, Jongseok;Park, Jaeheung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1160-1166
    • /
    • 2013
  • This paper presents feedforward controllers to improve the control performance of the motion and grasping force of a surgical instrument used in an MIS (Minimally Invasive Surgery) robot. The surgical instrument has a long distance between the drive motors and its active joints. Therefore, the gripper on the instrument is controlled by a cable drive mechanism, which generates a coupled motion between the wrist joint and the grip direction. In order to solve the problem, this paper analyzes the pulley composition of the surgical instrument and proposes feedforward controllers to eliminate the coupled motion. Furthermore, feedforward controllers to regulate the grasping force are proposed to deal with another coupling problem between the grasping force of the instrument and the motion of the instrument joints. The experimental results demonstrate the improved control performance of the motion and grasping force of the instrument.