• Title/Summary/Keyword: Temporary steel

Search Result 130, Processing Time 0.026 seconds

Estimation of Structural Behavior of the Long Span Temporary Bridge Superstructure Stiffened by Composite Double H-beam (2개의 H형강이 합성된 가설교량 상부구조의 구조거동 평가)

  • Lee, Seung Yong;Park, Young Hoon;Park, Sang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • In this study, in order to increase the span length, the temporary bridge which the center part of span is strengthened by small H-beam and the end part of span is strengthened by steel plate is designed and constructed. Real behavior of proposed temporary bridge is analyzed by field loading test. Analyzed shear buckling strengths and nonlinear behavior of suggested temporary bridge are compared with the those of general temporary bridge. From the field loading test results, it is analyzed that real static behavior of suggested temporary bridge is agree with the analyzed behavior which is considered in design process. Under the proposed design condition, it is investigated that the shear buckling strength of suggested temporary bridge is about 40% higher than that of general temporary bridge, and the ultimate strength of suggested temporary bridge is about higher than that of general temporary bridge. From the study results, it is concluded that the proposed temporary bridge can be applied by the needs of field condition.

Damage Detection and Damage Quantification of Temporary works Equipment based on Explainable Artificial Intelligence (XAI)

  • Cheolhee Lee;Taehoe Koo;Namwook Park;Nakhoon Lim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.11-19
    • /
    • 2024
  • This paper was studied abouta technology for detecting damage to temporary works equipment used in construction sites with explainable artificial intelligence (XAI). Temporary works equipment is mostly composed of steel or aluminum, and it is reused several times due to the characters of the materials in temporary works equipment. However, it sometimes causes accidents at construction sites by using low or decreased quality of temporary works equipment because the regulation and restriction of reuse in them is not strict. Currently, safety rules such as related government laws, standards, and regulations for quality control of temporary works equipment have not been established. Additionally, the inspection results were often different according to the inspector's level of training. To overcome these limitations, a method based with AI and image processing technology was developed. In addition, it was devised by applying explainableartificial intelligence (XAI) technology so that the inspector makes more exact decision with resultsin damage detect with image analysis by the XAI which is a developed AI model for analysis of temporary works equipment. In the experiments, temporary works equipment was photographed with a 4k-quality camera, and the learned artificial intelligence model was trained with 610 labelingdata, and the accuracy was tested by analyzing the image recording data of temporary works equipment. As a result, the accuracy of damage detect by the XAI was 95.0% for the training dataset, 92.0% for the validation dataset, and 90.0% for the test dataset. This was shown aboutthe reliability of the performance of the developed artificial intelligence. It was verified for usability of explainable artificial intelligence to detect damage in temporary works equipment by the experiments. However, to improve the level of commercial software, the XAI need to be trained more by real data set and the ability to detect damage has to be kept or increased when the real data set is applied.

Performance Evaluation of Rahman-type Movable Joint System for Temporary Bridge (단부 수평가동-수직구속 부재를 적용한 라멘형 가설교량의 거동평가)

  • Kim, Sang Hyo;Joung, Jung Yeun;Heo, Won Ho;Jung, Chi Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Most rahmen-type temporary bridges are constructed with limited bridge length to prevent excessive horizontal forces due to the thermal expansion of main girder. To achieve a long length temporary bridge several independent bridges are required and they can not share the bents, at the rahmen-type ends, with the adjacent ones. The additional bents require more cost and reduce the section space under bridges. In order to remove extra bents with keeping the rahmen effect at the bridge ends, this study proposes a new rahmen-type movable joint system for temporary bridges.

Development of Arm Insulator for Self-Build Based Emergency Tower (긴급복구용 자주조립식 철주 절연암 개발)

  • Min, Byeong-Wook;Wi, Hwa-Bog;Park, Jae-Ung;Lee, Cheol-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.107-108
    • /
    • 2007
  • Overhead transmission lines are completely exposed to the environment. This causes faults in transmission lines due to natural environmental conditions. In some cases, transmission towers are damaged by typhoons and snow, as well as sleet on the transmission lines. It takes a lot of time to repair the damaged towers. For emergency restoration purposes, steel poles are installed to temporarily supply power. Before 2003, emergency restoration steel poles were made of angled steel, which required a large number of beams, bolts, etc. In addition, the foundation of the steel pole and ground wire was constructed using excavation and burial methods, therefore it required a lot of manpower and time to construct temporary transmission lines. In September 2003, typhoon Maemi, whose maximum wind speed was 60m/s, hit Korea. 'Maemi' destroyed transmission lines in the Busan and Geojea area, causing long blackouts. To reduce the recovery time to the damaged transmission lines, self-build based emergency towers were developed. self-build based emergency towers reduced recovery time from 24 hours to 4 hours or less. However, the self-build based emergency tower had no arms, so the temporary transmission lines could only be constructed without curves in line routes. In this paper, solving these self-build based emergency tower limitations, using insulated arms(designed for use with the self-build based emergency tower), shall be explained.

  • PDF

Development of Individual Temporary Equipment Material/Quality/Delivery Management Standards(Guide) for Temporary Equipment Rental Company (가설기자재 임대업체를 위한 개별 가설기자재 자재/품질/납품관리 기준(Guide) 개발)

  • Lee, Junho;Kim, Junsang;Yoou, Geonhee;Cho, Sehyun;Kim, JungYeol;Kim, Youngsuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.62-72
    • /
    • 2024
  • Due to the distribution structure of domestic temporary equipment, quality control of temporary equipment is essential because more than 80% of temporary equipment is repeated and reused. Due to this importance, the Ministry of Land, Infrastructure and Transport has proposed quality management standards for temporary equipment for 10types of temporary equipments, including steel pipe support, but the overall quality of temporary eqipment cannot be confirmed because the quality is managed through sampling quality tests. In addition, although quality control standards exist for temporary material rental company, practical utilization was investigated and analyzed to be very low as they are mainly presented based on qualitative inspection standards by visual inspection. Therefore, the purpose of this study is to develop individual temporary material/quality/delivery management standards (Guides) for temporary equipment rental company to preemptively secure the quality of temporary equipment before bringing them into the construction site. If the standards developed through this study are applied to domestic temporary equipment rental companies, it is expected that high-quality temporary equipment with secured quality will be brought into the construction site as the quality of temporary equipment quality of domestic medium and small temporary equipment rental companies is improved safety accidents related to temporary structures.

A Study on the Buckling Characteristics of Steel Pipe Scaffold (강관비계의 좌굴특성에 관한 연구)

  • Paik, Shin-Won;Song, In-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.57-61
    • /
    • 2010
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Scaffoling is a temporary frame used to support people and material in the construction or repair of buildings and other large structures. It is usually a modular system of metal pipes, although it can be made out of other materials. Bamboo is still used in some Asian countries like China. The purpose of a working scaffold is to provide a safe place of work with safe access suitable for the work being done. In construction site, steel pipes are usually used as scaffolds. In this study, scaffolding systems which is changed according to sleeper and joist space were measured by buckling test. Buckling load of respective scaffolding system was analyzed by structural analysis program(MIDAS). Buckling load of scaffold with/without wall connection and footboard was got by test and structural analysis. According to these results,we know that scaffolding system of case 3 is suitable. Buckling load of scaffold with wall connection is higher than without wall connection. So wall connection is important in scaffoling systems. Footboard in the scaffolding systems is not effective against promotion of buckling load. Finally, the present study results will be used to design scaffolding systems safely in the construction sites.

A Study on the Accident Analysis of Architectural Work (건축건설공사의 재해분석에 관한 연구)

  • Kim, Jeongmin;Lee, Jong-Bin;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.96-101
    • /
    • 2016
  • Previous literature has been investigated various aspects of accident occurrence and prevention in construction field. However, those studied were limited in that they only focused on the death accident without considering the loss time accident. Based on this, the goal of current study was to investigate the nature of the loss time accident, and compare the results with the death accident. Results showed that 1) the occurrence rate of death accident was significantly higher in the form work, temporary work, and steel frame work; 2) the temporary work showed significantly higher occurrence rate of the loss time accident and the death accident as compared to others; 3) ratio of the loss time accident to the death accident in domestic construction field was 50:1; 4) fall accident showed biggest occurrence rate in both the loss time accident and the death accident; and 5) more that 80% of workers in both the loss time accident and the death accident was between 41 and 65 years old.

Temporary Arch Bridges Assembled by Snap-fit GFRP Decks and Bolts (첨단복합소재 데크를 볼트결합한 조립식 아치가교의 거동분석)

  • Hong, Kee-Jeung;Lee, Sung-Woo;Choi, Sung-Ho;Khum, Moon-Seoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.247-254
    • /
    • 2010
  • Due to lightweight and high durability of glass-fiber reinforced polyester (GFRP) materials, they are promising alternatives to conventional construction materials such as steel, concrete and wood. As good application examples of GFRP materials, several types of temporary arch bridges were suggested and verified by finite element analyses in our previous study where snap-fit GFRP decks were applied. In this paper, we conduct a structural performance test to verify safety and serviceability of the temporary arch bridge, where snap-fit GFRP decks are assembled by bolts. The structural problems occurred in this test are also discussed and improvement of temporary arch bridges is suggested to resolve the occurred structural problems.

Development of Temporary Arch Bridges by Using Snap-fit GFRP Composite Decks (조립식 복합소재 데크를 이용한 아치가교 개발)

  • Cho, Yong-Sang;Lee, Sung-Woo;Hong, Kee-Jeung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.217-223
    • /
    • 2008
  • Glass-fiber reinforced polyester (GFRP) composite material is a promising alternative to existing construction materials such as steel, concrete and wood due to light weight and high durability of GFRP composite material. If a temporary arch bridge is built by GFRP composite deck, rapid construction of the bridge and reuse of the GFRP composite deck are possible. In this paper, we develop a type of temporary arch bridges that can be built by easy assembling of GFRP composite decks. For this purpose, several possible types of temporary arch bridges are suggested and verified by finite element analysis.

Analytical testing and evaluation of truss typed structures for tunnel maintenance

  • Lee, Dongkyu;Kim, Dohwan;Lee, Jaehong;Noh, Pilsung;Park, Sungsoo
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.949-961
    • /
    • 2015
  • The goal of this study is to present numerical modeling and analytical testing in order to evaluate an innovative space truss typed temporary structure, which is used to maintenance and repair of road tunnels. The present space truss structure has merits to use UL-700 high strength steel tube as members and to carry out maintenance and repair works of road tunnels without blocking cars and transportations. Numerical modeling and analytical testing of the space truss are investigated by using commercial engineering software, i.e., ABAQUS 6.5-1, and then it is verified that the truss structure has both structural safety and effective function for maintenances and repairs of road tunnels.