본 논문은 컬러 영상에서 화염검출 시 주기적으로 점멸하는 비화염 물체 검출을 제거하기 위해 웨이블렛 변환을 이용한 화염 검출 알고리즘을 제안한다. 기존 화염검출 알고리즘에서는 화염의 색상과 시간적인 변화와 공간적인 변화를 분석하고 이들을 조합하여 화염을 판정한다. 하지만 자동차 경광등, 방향지시등과 같이 점멸하면서 화염과 비슷한 특성을 보이는 물체를 화염으로 검출하는 문제점이 있다. 본 논문은 주기적으로 점멸하면서 화염과 비슷한 특성을 보이는 비화염 요소의 주기성을 판별하여 오검출을 감소시킨다. 제안하는 알고리즘은 화염의 색상과 영상 차분 기법으로 화염 후보영역을 선정하고 선정된 후보영역에 대하여 웨이블렛 변환 계수를 분석하여 주기성을 갖는 오검출 요소를 포함한 비화염 영역을 제거하는 알고리즘을 제안한다. 제안된 알고리즘의 모의실험 결과, 주기성을 갖는 비화염 영역을 제거하였고 97.9%의 검출율과 7.3%의 낮은 오검출율 성능을 확인하였다.
수집신호의 통계적 특성을 기반으로 하는 차분전력분석 (Differential Power Analysis, DPA) 방법은 암호시스템의 키를 해독하는 데 아주 효과적인 방법으로 알려져 있다. 그러나 이 방법은 수집신호의 시간적인 동기와 잡음에 따라 공격 성능에 상당한 영향을 받는다. 본 논문에서는 DPA에서 시간적인 동기와 잡음에 의한 영향을 동시에 효과적으로 극복하는 웨이블릿(Wavelet) 기반의 신호처리 방법을 제안한다. 제안된 방법의 성능은 DES 연산중인 마이크로 컨트롤러 칩의 전력소비 신호를 이용해서 측정한다. 실험을 통해 제안된 웨이블릿 기반의 전처리 시스템의 성능은 키 해독에 필요한 필요 평문의 수가 기존의 방법들이 필요로 하는 25%의 평문의 수로도 충분함을 보여주고 있다.
본 논문에서는 3차원 비트율-왜곡 최적화 기반 블록 부호화를 이용하는 새로운 임베디드 비디오 압축 방법을 제안한다. 제안한 방법에서는 입력되는 비디오 프레임에 움직임 보상 시간적 필터링(Motion Compensated Temporal Filtering, MCTF)를 적용하여 비디오의 시간적 중복성을 제거한 후, 비디오 프레임에 2차원 이산 웨이브렛 변환을 수행하여 공간적 중복성을 제거한다. 이러한 방법으로 생성된 3차원 웨이브렛 계수들은 비트율-왜곡비 기댓값에 따라 정렬되며 3차원 블록분할 부호화 방법을 이용하여 부호화된다. 또한 제안한 방법은 임베디드 특징을 유지하면서도 효과적으로 컬러 비디오를 부호화하는 방법과 효율적인 비트율 제어 방법을 사용한다. 실험 결과는 제안한 방법이 임베디드 비트스트림을 생성하면서도 기존의 비디오 압축 방법과 비교하여 우수한 성능을 제공함을 보여준다.
본 논문에서는 비디오 컨텐츠 내에 소유자와 구매자 정보를 함께 포함하는 핑거프린팅 정보를 삽입하여 불법으로 배포된 핑거프린팅 컨텐츠로부터 배포자가 누구인지를 추적할 수 있는 기법을 보인다. 특히, 문헌[1]에서 제시된 시간축 웨이블릿 변환을 이용하여 핑거프린팅 정보가 삽입될 영역을 분리해 주고, 역 변환을 통해 전 영역의 비디오 프레임에 정보가 삽입되게 된다. 이로 인해 핑거프린팅된 컨텐츠의 상이성을 이용한 기존의 여러 공모공격에도 강인함을 보이고 있다. 또한, 비디오 컨텐츠의 특성상 MPEG2의 압축에도 불법 배포자를 추적할 수 있는 강인함을 보인다.
콘크리트의 동탄성계수는 KS F 2437에 규정된 바와 같이 탄성파 비파괴시험인 충격반향기법에 따라 측정할 수 있다. 자유단 경계조건에서의 콘크리트 공시체에 대한 종방향 고유진동수를 웨이블릿 변환이론을 적용하여 평가하였다. 웨이블릿 변환은 순수한 스펙트럼 해석뿐만 아니라 시간영역에서의 분해신호를 추출하는데 있어 시간-주파수 공간에서의 실제 신호형상을 제공하는 장점을 갖고 있다. 이 실험에 적용된 배합비를 갖는 콘크리트의 경우에 동탄성계수와 정탄성계수의 평가 결과가 큰 차이를 나타내지 않아 일반적으로 알려져 있는 정도는 아닌 것으로 판단된다. 충격반향기법에서 결정된 동탄성계수와 정적시험에서 결정된 정탄성계수는 변형률 정도를 고려하여 비교하면 비교적 서로 잘 일치하며 이 실험에서의 동탄성계수는 평균변형률 $1.04{\times}10^{-4}$에서의 접선탄성계수와 같은 것으로 평가되었다.
Murukesh, C.;Thanushkodi, K.;Padmanabhan, Preethi;Feroze, Naina Mohamed D.
Journal of Electrical Engineering and Technology
/
제9권6호
/
pp.2118-2125
/
2014
Gait Recognition is a new technique to identify the people by the way they walk. Human gait is a spatio-temporal phenomenon that typifies the motion characteristics of an individual. The proposed method makes a simple but efficient attempt to gait recognition. For each video file, spatial silhouettes of a walker are extracted by an improved background subtraction procedure using Gaussian Mixture Model (GMM). Here GMM is used as a parametric probability density function represented as a weighted sum of Gaussian component densities. Then, the relevant features are extracted from the silhouette tracked from the given video file using the Principal Component Analysis (PCA) method. The Fisher Linear Discriminant Analysis (FLDA) classifier is used in the classification of dimensional reduced image derived by the PCA method for gait recognition. Although gait images can be easily acquired, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. To overcome this problem, it is combined with footprint as a multimodal biometric system. The minutiae is extracted from the footprint and then fused with silhouette image using the Discrete Stationary Wavelet Transform (DSWT). The experimental result shows that the efficiency of proposed fusion algorithm works well and attains better result while comparing with other fusion schemes.
본 논문에서는 뇌파 신호를 이용하여 환자의 경련을 감지하는 순환 CNN (Convolutional Neural Networks)을 제안한다. 제안 된 방법은 뇌파 신호의 스펙트럼 특성과 전극의 위치를 보존하기 위해 영상으로 데이터를 매핑하여 처리하였다. 스펙트럼 전처리 과정을 거친 후 CNN에 입력하고 공간 및 시간 특성을 웨이블릿 변환(wavelet transform)없이 추출하여 발작을 검출하였다. 여기에 사용된 보스턴 매사추세츠 공과 대학 (Boston Massachusetts Institute of Technology, CHB-MIT) 아동 병원의 데이터셋 결과는 시간당 0.85의 민감도와 90 %의 위양성 비율 (FPR)을 보였다.
The 3D DWT(The Three Dimensional Discrete Wavelet Transform) scheme is potentially regarded as useful one on analyzing both spatial and spectral information. Nevertheless, few researchers have attempted to process or classified remotely sensed images using the 3D DWT. This study aims to apply the 3D DWT to the land cover classification of optical and SAR(Synthetic Aperture Radar) images. Then, their results are evaluated quantitatively and compared with the results of traditional classification technique. As the experimental results, the 3D DWT shows superior classification results to conventional techniques, especially dealing with the high-resolution imagery and SAR imagery. It is thought that the 3D DWT scheme can be extended to multi-temporal or multi-sensor image classification.
본 논문에서는 웨이블릿 변환이론을 동적 응답변환 알고리즘에 적용하였다. 응답변환 알고리즘에서는 변환응답의 정의에 따라 변위자료를 평가할 수 있는 기법이 제시되었으며, 측정된 가속도신호의 적분에 의한 속도와 변위응답의 추정에서 속도와 변위성분의 초기조건에 대한 정보가 불필요하도록 유도되었다. 웨이블릿 변환은 순수한 스펙트럼 해석뿐만 아니라 시간영역에서의 분해신호를 추출하는데 있어 시간-주파수 공간에서의 실제 신호형상을 제공하는 장점을 갖고 있다. 웨이블릿 분해신호를 사용한 응답변환에서는 추정된 변위곡선에서 정적성분을 추출하거나 동적 변위성분의 모우드별 분리를 가능하게 한다. 제시된 응답변환 알고리즘의 타당성을 평가하기 위해 이동하중이 재하된 실 교량의 현장시험자료를 적용하였다. 교량의 동적 재하시험에서 추정응답의 신뢰도가 확보될 경우에 제시된 방법에 의한 보다 정확한 충격계수의 평가가 가능할 것으로 사료되며, 직접적인 변위의 측정이 곤란한 대형구조물에 대한 동특성의 평가에서도 유용하게 적용될 수 있을 것으로 판단된다.
Fire must be extinguished as quickly as possible because they cause a lot of economic loss and take away precious human lives. Especially, the detection of smoke, which tends to be found first in fire, is of great importance. Smoke detection based on image has many difficulties in algorithm research due to the irregular shape of smoke. In this study, we introduce a new real-time smoke detection algorithm that reduces the detection of false positives generated by irregular smoke shape based on faster r-cnn of factory-installed surveillance cameras. First, we compute the global frame similarity and mean squared error (MSE) to detect the movement of smoke from the input surveillance camera. Second, we use deep learning algorithm (Faster r-cnn) to extract deferred candidate regions. Third, the extracted candidate areas for acting are finally determined using space and temporal features as smoke area. In this study, we proposed a new algorithm using the space and temporal features of global and local frames, which are well-proposed object information, to reduce false positives based on deep learning techniques. The experimental results confirmed that the proposed algorithm has excellent performance by reducing false positives of about 99.0% while maintaining smoke detection performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.