DOI QR코드

DOI QR Code

An Embedded Video Compression Scheme Using a Three-Dimensional Rate-Distortion Optimization Based Block Coder

3차원 비트율-왜곡 최적화 기반 블록 부호화를 이용하는 임베디드 비디오 압축 방법

  • Yang, Chang Mo (Smart Media Research Center, Korea Electronics Technology Institute) ;
  • Chung, Kwangsue (Department of Communications Engineering, Kwangwoon University)
  • Received : 2016.09.13
  • Accepted : 2016.10.07
  • Published : 2016.10.31

Abstract

In this paper, we propose a new embedded video compression scheme which uses three-dimensional rate-distortion optimization based block coder. After the proposed scheme removes temporal redundancy by applying the motion compensated temporal filtering(MCTF) on input video frames, two dimensional discrete wavelet transform is applied on video frames to remove spatial redundancy. The three-dimensional wavelet coefficients generated in this way are sorted according to their expected rate-distortion slope and encoded by using the three-dimensional block partition coding method. The proposed scheme also uses both the effective color video coding method which maintains embedded features, and the efficient bit-rate control method. Experimental results demonstrate that the proposed scheme not only produces embedded bit-streams, but also outperforms existing video compression schemes.

본 논문에서는 3차원 비트율-왜곡 최적화 기반 블록 부호화를 이용하는 새로운 임베디드 비디오 압축 방법을 제안한다. 제안한 방법에서는 입력되는 비디오 프레임에 움직임 보상 시간적 필터링(Motion Compensated Temporal Filtering, MCTF)를 적용하여 비디오의 시간적 중복성을 제거한 후, 비디오 프레임에 2차원 이산 웨이브렛 변환을 수행하여 공간적 중복성을 제거한다. 이러한 방법으로 생성된 3차원 웨이브렛 계수들은 비트율-왜곡비 기댓값에 따라 정렬되며 3차원 블록분할 부호화 방법을 이용하여 부호화된다. 또한 제안한 방법은 임베디드 특징을 유지하면서도 효과적으로 컬러 비디오를 부호화하는 방법과 효율적인 비트율 제어 방법을 사용한다. 실험 결과는 제안한 방법이 임베디드 비트스트림을 생성하면서도 기존의 비디오 압축 방법과 비교하여 우수한 성능을 제공함을 보여준다.

Keywords

References

  1. N. Kim, T. Song, W. Kim, and S. Pack, "A scalable video coding(SVC)-aware retransmission scheme," J. KICS, vol. 39, no. 02, pp. 95-101, Feb. 2014.
  2. H. Lee, H. J. Shim, Y. Park, and B. Jeon, "Fast motion estimation using adaptive search range for HEVC," J. KICS, vol. 39, no. 4, pp. 209-211, Apr. 2014.
  3. B. J. Kim, Z. Xiong, and W. A. Pearlman, "Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT)," IEEE Trans. Cir. and Syst. for Video Techol., vol. 10, no. 8, pp. 1374-1387, Dec. 2000. https://doi.org/10.1109/76.889025
  4. E. Khan and M. Ghanbari, "Wavelet-based video coding with early-predicted zerotrees," IET Image Process., vol. 1, no. 1, pp. 95-102, Mar. 2007. https://doi.org/10.1049/iet-ipr:20050158
  5. L. Zhang, D. Wang, and A. Vincent, "Decoupled 3-D zerotree structure for wavelet-based video coding," IEEE Trans. Broadcasting, vol. 54, no. 3, pp. 430-436, Jul. 2008. https://doi.org/10.1109/TBC.2008.2000551
  6. C. Naveen, V. R. Satpute, A. G. Keskar, and K. D. Kulat, "Comparative analysis of video compression mechanisms based on EZW coded 3D-DWT and AVI," IEEE Int. Symp. Signal Process. and Inf. Techol., pp. 96-101, Dec. 2014.
  7. K. Cheng and J. Dill, "Lossless to lossy dual-tree BEZW compression for hyperspectral images," IEEE Trans. Geoscience and Remote Sensing, vol. 52, no. 9, pp. 5765-5770, Sept. 2014. https://doi.org/10.1109/TGRS.2013.2292366
  8. X. Tang, W. A. Pearlman, and J. W. Modestino, "Hyperspectral image compression using three-dimensional wavelet coding: a lossyto-lossless solution," Image and Video Commun. and Process., pp. 1-22, Mar. 2004.
  9. M. J. H. Loomans, C. J. Koeleman, and P. H. N. With, "Low-complexity wavelet based scalable image & video coding for home-use surveillance," IEEE Trans. Consumer Electron., vol. 57, no. 2, pp. 507-515, May 2011. https://doi.org/10.1109/TCE.2011.5955186
  10. P. Chen and J. W. Woods, "Bidirectional MC-EZBC with lifting implementation," IEEE Trans. Cir. and Syst. for Video Techol., vol. 14, no. 10, pp. 1183-1194, Oct. 2004. https://doi.org/10.1109/TCSVT.2004.833165
  11. Y. Wu, K. Hanke, T. Rusert, and J. W. Woods, "Enhanced MC-EZBC scalable video coder," IEEE Trans. Cir. and Syst. for Video Techol., vol. 18, no. 10, pp. 1432-1436, Jun. 2008. https://doi.org/10.1109/TCSVT.2008.927003
  12. Y. Chen and G. Liu, "Improved overlapped block motion compensation using adaptive weighting matrices design for 3D wavelet-based scalable video coding," IEEE Int. Conf. Signal Process., Commun. and Computing, pp. 1-6, Sept. 2015.
  13. Y. Wu and J. W. Woods, "Scalable motion vector coding based on CABAC for MC-EZBC," IEEE Trans. Cir. and Syst. for Video Techol., vol. 17, no. 6, pp. 790-795, Jun. 2007. https://doi.org/10.1109/TCSVT.2007.894043
  14. A. Golwelkar and J. W. Woods, "Motioncompensated temporal filtering and motion vector coding using biorthogonal filters," IEEE Trans. Cir. and Syst. for Video Techol., vol. 17, no. 4, pp. 417-428, Apr. 2007. https://doi.org/10.1109/TCSVT.2007.893834
  15. C. Tillier, B. P. Popescu, and M. Schaar, "3-band motion-compensated temporal structures for scalable video coding," IEEE Trans. Image Process., vol. 15, no. 9, pp. 2545-2557, Sept. 2006. https://doi.org/10.1109/TIP.2006.877411
  16. J. Xu, Z. Xiong, S. Li, and Y. Q. Zhang, "Three-dimensional embedded subband coding with optimized truncation (3-D ESCOT)," Applied and Computational Harmonic Anal., vol. 10, no. 3, pp. 290-315, May 2001. https://doi.org/10.1006/acha.2000.0345
  17. E. Belyaev, K. Egiazarian, and M. Gabbouj, "A low-complexity bit-plane entropy coding and rate control for 3-D DWT based video coding," IEEE Trans. Multimedia, vol. 15, no. 8, pp. 1786-1799, Dec. 2013. https://doi.org/10.1109/TMM.2013.2269315
  18. H. Xiong, L. Zhu, N. Ma, and Y. F. Zheng, "Scalable video compression framework with adaptive orientational multiresolution transform and nonuniform directional filterbank design," IEEE Trans. Cir. and Syst. for Video Techol., vol. 21, no. 8, pp. 1085-1099, Aug. 2011. https://doi.org/10.1109/TCSVT.2011.2133310
  19. B. B. Fradj and A. O. Zaid, "Scalable video coding using motion-compensated temporal filtering," Eur. Wksp. Visual Info. Process., pp. 50-55, Jul. 2011.
  20. C. M. Yang and K. Chung, "Embedded image compression scheme using rate-distortion optimized block coding of wavelet coefficients," J. KICS, vol. 39, no. 11, pp. 625-636, Nov. 2014.
  21. J. E. Fowler and B. P. Popescu, "An overview on wavelets in source coding, communications and networks," EURASIP J. Image and Video Process., vol. 2007, pp. 1-27, Jun. 2007.
  22. S. Zafar, Y. Zhang, and B. Jabbari, "Multi-scale video representation using multi-resolution motion compensation and wavelet decomposition," IEEE J. Sel. Areas in Commun., vol. 11, no. 1, pp. 24-35, Jan. 1993. https://doi.org/10.1109/49.210541
  23. J. Heo, and C. Ryu, "Contents adaptive MCTF using JND," J. KICS, vol. 34, no. 1, pp. 48-55, Jan. 2009.
  24. D. Taubman, "High performance scalable image compression with EBCOT," IEEE Trans. Image Process., vol. 9, no. 7, pp. 1158-1170, Jul. 2000. https://doi.org/10.1109/83.847830
  25. T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, "Overview of the H.264/AVC video coding standard," IEEE Trans. Cir. and Syst. for Video Techol., vol. 13, no. 7, pp. 560-576, Jul. 2003. https://doi.org/10.1109/TCSVT.2003.815165