• Title/Summary/Keyword: Temporal stability analysis

Search Result 55, Processing Time 0.029 seconds

TEMPORAL AND SPATIO-TEMPORAL DYNAMICS OF A MATHEMATICAL MODEL OF HARMFUL ALGAL INTERACTION

  • Mukhopadhyay, B.;Bhattacharyya, R.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.385-400
    • /
    • 2009
  • The adverse effect of harmful plankton on the marine ecosystem is a topic of deep concern. To investigate the role of such phytoplankton, a mathematical model containing distinct dynamical equations for toxic and non-toxic phytoplankton is analyzed. Stability analysis of the resulting three equation model is carried out. A continuous time variation in toxin liberation process is incorporated into the model and a stability analysis of the resulting delay model is performed. The distributed delay model is then extended to include the spatial distribution of plankton and the delay-diffusion model is analyzed with spatial and spatiotemporal kernels. Conditions for diffusion-driven instability in both the cases are derived and compared to explore the significance of these kernels. Numerical studies are performed to justify analytical findings.

  • PDF

A Review of Eye-tracking Method in Elementary Science Education Research (초등과학 교육연구에서 시선추적 연구방법의 고찰)

  • Shin, Won-Sub
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.3
    • /
    • pp.288-304
    • /
    • 2016
  • The purpose of this study is a review of previous studies and principles of eye-tracking techniques that are actively applied in recent elementary science education. Also it proposes to utilize the direction of eye tracking techniques in elementary science education research. Recent eye-tracking technology was developed, using the infrared pupil and the corneal reflection can be safely and accurately track the eye movements of the participants. Eye tracking has the advantage of higher temporal resolution, accessibility, convenience, objectivity, stability and safety. Analysis of the previous studies, there was a difference in the study design and analysis. The workshops and seminars are needed for accurate understanding of eye-tracking method in elementary science education research. In conclusion, the eye-tracking can be utilized such as effectiveness analysis of teaching materials and media, behaviors analysis of teachers and students in a real class, cognitive strategies and attention analysis of the student, discriminating tool of various education evaluation, etc.

Application of Dynamic Reliability Model to Analysis of Armor Stability of Rouble-Mound Breakwaters (경사제 피복재의 안정성 해석에 대한 동적 신뢰성 모형의 적용)

  • Kim, Sung-Ho;Lee, Cheol-Eung
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.215-226
    • /
    • 2004
  • A dynamic reliability model which can take into account the time history of loading sequences may be applied to the analyses of the hydraulic stability of armor units on rubble-mound breakwaters. All the parameters related to the stability of structures have been considered to be constants in the deterministic model until now. Thus, it is impossible to study the effects of some uncertainties of the related random variables on the stability of structures. In this paper, the dynamic reliability model can be developed by POT(Peak Over Threshold) method in order to take into account the time history of loading sequences and to investigate the temporal behaviors of stability of structure with its loading history. Finally, it is confirmed that the results of dynamic reliability model agree with straight- forwardly those of AFDA(Approximate Full Distribution Approach) of the static reliability model for the same input conditions. In addition, the temporal behaviors of probability of failure can be studied by the dynamic reliability model developed to analyze the hydraulic stability of armor units on rubble-mound breakwaters. Therefore, the present results may be useful for the management of repair and maintenance over the whole life cycle of structure.

  • PDF

Analysis of Postural Stability in Response to External Perturbation Intensity in Dancers and Non-dancers

  • Park, Da Won;Koh, Kyung;Lee, Sung Ro;Park, Yang Sun;Shim, Jae Kun
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.427-432
    • /
    • 2016
  • Objective: The goal of this study was to systematically investigate the postural stability of dancers by providing unexpected perturbations. Method: Six female dancers and college students participated in this study. Unpredictable wait-pull balance perturbations in the anterior direction were provided to the participants during standing. Three different perturbation intensities (low, moderate, and high intensity) were used by increasing perturbation forces. Spatial and temporal stability of postural control were measured by using margin of stability (MoS) and time to contact (TtC), respectively. Results: Both MoS and TtC at moderate intensity were significantly greater in the dancer group than in the control group, but no significant differences were found at low and high intensities between the groups. Conclusion: The present study showed spatial and temporal stability of dynamic postural control in dancers. We found that the dancers were more spatially and temporally stable than the ordinary participants in response to unexpected external perturbation when the perturbation intensity was moderate at two extreme intensity levels (low and high).

Spatio-temporal Variability of Soil Moisture within Remote Sensing Footprints in Semi-arid Area (건조지역 원격탐사 footprint 내 토양수분의 시공간적 변동성 분석)

  • Hwang, Kyotaek;Cho, Hun Sik;Lee, Seung Oh;Choi, Minha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.285-293
    • /
    • 2010
  • Soil moisture is a key factor to control the exchange of water and energy between the surface and the atmosphere. In recent, many researches for spatial and temporal variability analyses of soil moisture have been conducted. In this study, we analyzed the spatio-temporal variability of soil moisture in Walnut Gulch Experimental Watershed, Arizona, U.S. during the Soil Moisture Experiment 2004 (SMEX04). The spatio-temporal variability analyses were performed to understand sensitivity of five observation sites with precipitation and relationship between mean soil moisture, and its standard deviation and coefficient of variation at the sites, respectively. It was identified that log-normal distribution was superior to replicate soil moisture spatial patterns. In addition, precipitation was identified as a key physical factor to understand spatio-temporal variability of soil moisure based on the temporal stability analysis. Based on current results, higher spatial variability was also observed which was agreed with the results of previous studies. The results from this study should be essential for improvement of the remotely sensed soil moisture retrieval algorithm.

A study on the selection of representative points of soil moisture observatories through temporal stability analysis method (시간 안정성 해석법을 통한 토양수분 관측소 대표지점 선정 연구)

  • Kim, Kiyoung;Lee, Yongjun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.384-384
    • /
    • 2021
  • 토양수분량 측정은 대표적으로 유전율을 측정하는 방식으로 토양수분 측정을 수행하고 있으며 비교적 정확하고 연속적인 자료를 수집할 수 있는 장점을 가지고 있다. 하지만 토양수분량은 인근의 동종(homogeneous)의 지형일지라도 측정 위치에 따라 값과 변화 특성의 차이가 발생한다. 이는 각 지점마다 토양, 식생, 지형 등의 다양한 환경 때문에 발생하며, 이러한 다양한 환경을 모두 고려하여 분석하기란 쉽지 않다. 이를 극복하기 위해 시간적 안정성 해석(Temporal stability analysis) 개념을 통해 기 설치된 토양수분의 지속적인 토양수분 패턴을 식별하고 선택된 대표 센서 위치에서 전체적인 평균을 산출하는 연구가 있었으며, 미국에서도 위성을 활용한 지상검증 연구를 위해 측정 그리드(grid)별로 시간적 안정성 해석 개념을 통해 지상 측정 네트워크 체계를 갖추었다. 국내에서도 최근 인공위성을 활용하여 토양수분을 산정하는 연구가 많아짐에 따라 측정 지역의 대표 토양수분 값을 선정하는 연구의 수요가 증가하였으며 수문자료의 지속성을 위해 결측을 최소화 방안으로 관측소 이중화 지점을 선정하는 연구의 필요성도 증가하였다. 따라서 본 연구에서는 기존에 설치되어있는 설마천, 청미천 토양수분 관측소에 구역별 시간 안정성 해석법을 수행하여 추후 지점의 대표 토양수분을 산정할 수 있으며 이중화 설치 지점을 제시하는데 기여할 수 있을 것으로 판단된다.

  • PDF

An approach to the coupled dynamics of small lead cooled fast reactors

  • Zarei, M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1272-1278
    • /
    • 2019
  • A lumped kinetic modeling platform is developed to investigate the coupled nuclear/thermo-fluid features of the closed natural circulation loop in a low power lead cooled fast reactor. This coolant material serves a reliable choice with noticeable thermo-physical safety characteristics in terms of natural convection. Boussienesq approximation is resorted to appropriately reduce the governing partial differential equations (PDEs) for the fluid flow into a set of ordinary differential equations (ODEs). As a main contributing step, the coolant circulation speed is accordingly correlated to the loop operational power and temperature levels. Further temporal analysis and control synthesis activities may thus be carried out within a more consistent state space framework. Nyquist stability criterion is thereafter employed to carry out a sensitivity analysis for the system stability at various power and heat sink temperature levels and results confirm a widely stable natural circulation loop.

Aeroelastic stability analysis of a two-stage axially deploying telescopic wing with rigid-body motion effects

  • Sayed Hossein Moravej Barzani;Hossein Shahverdi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.419-437
    • /
    • 2023
  • This paper presents the study of the effects of rigid-body motion simultaneously with the presence of the effects of temporal variation due to the existence of morphing speed on the aeroelastic stability of the two-stage telescopic wings, and hence this is the main novelty of this study. To this aim, Euler-Bernoulli beam theory is used to model the bending-torsional dynamics of the wing. The aerodynamic loads on the wing in an incompressible flow regime are determined by using Peters' unsteady aerodynamic model. The governing aeroelastic equations are discretized employing a finite element method based on the beam-rod model. The effects of rigid-body motion on the length-based stability of the wing are determined by checking the eigenvalues of system. The obtained results are compared with those available in the literature, and a good agreement is observed. Furthermore, the effects of different parameters of rigid-body such as the mass, radius of gyration, fuselage center of gravity distance from wing elastic axis on the aeroelastic stability are discussed. It is found that some parameters can cause unpredictable changes in the critical length and frequency. Also, paying attention to the fuselage parameters and how they affect stability is very important and will play a significant role in the design.

UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR SINGULARLY PERTURBED PARABOLIC DELAY DIFFERENTIAL EQUATIONS

  • WOLDAREGAY, MESFIN MEKURIA;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.623-641
    • /
    • 2021
  • In this paper, numerical treatment of singularly perturbed parabolic delay differential equations is considered. The considered problem have small delay on the spatial variable of the reaction term. To treat the delay term, Taylor series approximation is applied. The resulting singularly perturbed parabolic PDEs is solved using Crank Nicolson method in temporal direction with non-standard finite difference method in spatial direction. A detail stability and convergence analysis of the scheme is given. We proved the uniform convergence of the scheme with order of convergence O(N-1 + (∆t)2), where N is the number of mesh points in spatial discretization and ∆t is mesh length in temporal discretization. Two test examples are used to validate the theoretical results of the scheme.

Analysis on Characteristics of Sediment Produce by Landslide in a Basin 2. Rainfall Event-based Analysis (유역 내에서의 산사태에 의한 토사발생특성 분석 2. 강우사상별 분석)

  • Yoo, Chul-Sang;Kim, Kee-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • This study analyzed the characteristics of sediment produce by landslide triggered by rainfall. One-dimensional unsaturated groundwater model and infinite slope stability analysis were used to estimate the behavior of soil moisture and slope stability according to rainfall, respectively. Slope stability analysis was performed considering on soil depth and characteristics of trees. The results of the analysis on characteristics of sediment produce according to rainfall events showed that the sediment produce by landslide was mainly contributed to rainfall intensity and its temporal clustering. The results of the analysis on characteristics of sediment produce by extreme events showed that remaining rainfall amount of typhoon 'Rusa' was much more than that of the other extreme events, and thus this remaining rainfall was to contribute to sediment transportation. Additionally, only a small number of extreme events were found to cause most amount of sediment produce in a basin.