• 제목/요약/키워드: Tempering

검색결과 313건 처리시간 0.021초

STD 11강 마모특성에 미치는 서브제로처리의 영향 (Effect of Cryogenic Treatment on Wear Resistance of STD 11 Steel)

  • 홍영환;송건
    • 열처리공학회지
    • /
    • 제16권3호
    • /
    • pp.134-140
    • /
    • 2003
  • Effects of cryogenic treatment and tempering temperature on the amount of retained austenite, hardness and wear properties has been investigated using alloy tool steel, STD 11. Cryogenic treatments were performed at the temperatures of $-100^{\circ}C$, $-150^{\circ}C$ and $-196^{\circ}C$, and tempering were performed at $200^{\circ}C$ and $530^{\circ}C$. It was shown that lower hardness value was obtained on high temperature ($530^{\circ}C$) tempering even after cryogenic treatment. And retained austenite was not entirely transformed to martensite after cryogenic treatment even at $-196^{\circ}C$, which was not consistent with the belief that $-80^{\circ}C$ was sufficient to entirely transform any austenite retained in the quenched microstructure. Austenite retained in cryogenic treated condition was completely transformed to martensite only after tempering at $530^{\circ}C$. As far as wear test conditions in this investigation, it was found that cryogenic treatments improved the sliding wear resistance, but improvement of wear resistance was not directly related with retained austenite contents. And it was found that predominent wear mechanisms of STD 11 steel were oxidation wear and adhesive wear In sliding wear conditions.

구상화 열처리한 Cr-Mo강의 오스테나이트화 온도가 기계적 성질에 미치는 영향 (Effect of Austenitizing Temperature on Mechanical Properties in the Spheroidized Cr-Mo Steel)

  • 고도환;윤지훈;박상준;김정민;강희재;성장현
    • 열처리공학회지
    • /
    • 제24권4호
    • /
    • pp.187-192
    • /
    • 2011
  • Effect of austenitizing temperatures on the impact value of the AISI 4140 steel after repetition of spheroidization and cold deep drawing treatment has been studied. Sufficient dissolution of carbide was shown after austenitizing at the high temperature of $950^{\circ}C$. Accordingly, the impact value was remarkably increased by tempering of this high temperature austenitized steel at the tempering temperature ranges between $570^{\circ}C$ and $630^{\circ}C$. On the other hand, remarkable decrease in the impact values and elongations were shown by tempering the low temperature-austenitized ($870^{\circ}C$) steel due to the coarsening of undissolved-carbide existed at the austenitizing temperature.

펄스 자기장을 이용한 잔류 응력 완화 연구 (A Study on the Stress Relief by Pulse Magnetic Treatment)

  • 오주숙;양원존;이종훈;박용호
    • 열처리공학회지
    • /
    • 제24권3호
    • /
    • pp.149-155
    • /
    • 2011
  • Residual stress relief by pulse magnetic treatment is attractive because the process is carried out at room temperature and magnetic fields that are easy to produce and control can be used. This study shows that strong pulse magnetic treatment can lead to stress relaxation of structural steels instead of a conventional heat treatment process. And it makes a comparative study about pulse magnetic treatment and tempering by using Larson-Miller equation. When the specimen was subjected to a pulse magnetic treatment process the residual stress in the specimen was reduced by about 13.8%. It could be compared with tempering at $200^{\circ}C$ for 2hours by using thermal effect of Larson-Miller equation. As a result, it is considered that the pulsed magnetic treatment have an effect of the stress relation by tempering at $200^{\circ}C$ for 2 hours.

고경도 철계 장갑재의 미세조직과 기계적 특성 분석 (Microstructure and Mechanical Properties of the High-Hardness Armor Steels)

  • 이지민;한종주;송영범;함진희;김홍규;황병철
    • 한국재료학회지
    • /
    • 제28권8호
    • /
    • pp.459-465
    • /
    • 2018
  • This paper presents a study of the microstructure and mechanical properties of commercial high-hardness armor (HHA) steels tempered at different temperatures. Although the as-received specimens of all the steels exhibit a tempered martensite structure with lath type morphology, the A steel, which has the smallest carbon content, had the lowest hardness due to reduced solid solution hardening and larger lath thickness, irrespective of tempering conditions. As the tempering temperature increases, the hardness of the steels steadily decreases because dislocation density decreases and the lath thickness of martensite increases due to recovery and over-aging effects. When the variations in hardness plotted as a function of tempering temperature are compared with the hardness of the as-received specimens, it seems that the B steel, which has the highest yield and tensile strengths, is fabricated by quenching, while the other steels are fabricated by quenching and tempering. On the other hand, the impact properties of the steels are affected by specimen orientation and test temperature as well as microstructure. Based on these results, the effect of tempering on the microstructure and mechanical properties of commercial high-hardness armor steels is discussed.

STD11 고속도 공구강의 고온 가스질화 처리 및 템퍼링에 관한 연구 (A Study on the High Temperature Gas Nitriding and Tempering in STD11 steel)

  • 공정현;강창룡;성장현
    • 열처리공학회지
    • /
    • 제22권5호
    • /
    • pp.282-289
    • /
    • 2009
  • The effects of the high temperature gas nitriding (HTGN), tempering and subzero treatment of STD11 steel have been investigated. HTGN treatment was carried out at $1050^{\circ}C$, $1100^{\circ}C$ and $1150^{\circ}C$ for 1 hr. in an atmosphere of $1\;kg/cm^2$ nitrogen gas. Tempering and double-tempering were performed at $550^{\circ}C$ for 1 hr. The surface layer of HTGN-treated steel appeared the precipitates of $M_2N$, $M_7C_3$ and $M_{23}C_6$ in the matrix of austenite. However, the interior region exhibited martensite with the precipitation of carbides. The nitrogen content of the surface layer appeared ~1.35 wt.%, ~0.83 wt.% and ~0.56 wt.% at the HTGN treatment temperature of $1050^{\circ}C$, $1100^{\circ}C$ and $1150^{\circ}C$, respectively. The surface hardness of double-tempered and subzero-treated steel measured the maximum value of 828 Hv, 960 Hv, 750 HV after HTGN treatment at the $1050^{\circ}C$, $1100^{\circ}C$ and $1150^{\circ}C$, respectively. These hardness value increased above 230~420 Hv compared with the HTGN-treated steel due to the decrease in retained austenite and existence of fine precipitates.

해석 해의 온도곡선을 이용한 템퍼비이드 용접공정 평가기술 (Techniques for Estimating Temper Bead Welding Process by using Temperature Curves of Analytical Solution)

  • 이호진;이봉상;박광수;변진귀;정인철
    • Journal of Welding and Joining
    • /
    • 제28권5호
    • /
    • pp.51-57
    • /
    • 2010
  • Brittle microstructure created in a heat affected zone (HAZ) during the welding of low alloy steel can be eliminated by post-weld heat treatment (PWHT). If the PWHT is not possible during a repair welding, the controlled bead depositions of multi-pass welding should be applied to obtain tempering effect on the HAZ without PWHT. In order to anticipate and control the tempering effect during the temper bead welding, the definition of temperature curve obtained from the analytical solution was suggested in this research. Because the analytical solution for heat flow is expressed as a mathematical equation of weld parameters, it may be effective in anticipating the effect of each weld parameter on the tempering in HAZ during the successive bead depositions. The reheating effect by the successive bead layer on the brittle coarse grained HAZ formed by earlier bead deposition was estimated by comparing the overlapped distance between the temperature curves in the HAZ. Three layered weld specimens of SA508 base metal with A52 filler were prepared by controlling heat input ratio between layers. The tempering effect anticipated by using the overlapped distance between the temperature curves was verified by measuring the micro-hardness distribution in the HAZ of prepared specimens. The temperature curve obtained from analytical solution was expected as a good tool to find optimal temper bead welding conditions.

AC8A 알루미늄합금 주조재의 열처리에 의한 특성 평가 (Evaluation of the Characteristics of the Aluminum Alloy Casting Material by Heat Treatment)

  • 이성열;박동현;원종필;김윤해;이명훈;문경만;정재현
    • Corrosion Science and Technology
    • /
    • 제11권6호
    • /
    • pp.280-285
    • /
    • 2012
  • Aluminum is on active metal, but it is well known that its oxide film plays a role as protective barrier which is comparatively stable in air and neutral aqueous solution. Thus, aluminum alloys have been widely applied in architectural trim, cold & hot-water storage vessels and piping etc., furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston because of its properties of temperature and wear resistance. In recent years, the oil price is getting higher and higher, thus the using of low quality oil has been significantly increased in engines of ship and vehicle. Therefore it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and prolong its lifetime. In this study, the effect of solution and tempering heat treatment to corrosion and wear resistance is investigated with electrochemical method and measurement of hardness. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment and exhibited the highest value of hardness with tempering heat treatment temperature at $190^{\circ}C$ for 24hrs. Furthermore, corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. As a result, it is suggested that the optimum heat treatment to improve both corrosion and wear resistance is tempering heat treatment temperature at $190^{\circ}C$ for 16hrs.

고주파 열처리 온도에 따른 선조질강의 인장특성 (Tensile Properties of Energy Saving Wire (ESW) with respect to Temperatures of High Frequency Induction Heat Treatment)

  • 이진범;강남현;박지태;안순태;박영도;최일동;남대근;조경목
    • 대한금속재료학회지
    • /
    • 제48권11호
    • /
    • pp.974-980
    • /
    • 2010
  • Various types of steel, namely, 0.35C, 0.2C-Cr, and 0.2C-Cr-Mo steels, were quenched and tempered by high-frequency induction heat treatment. The type, size, and spheroidization of the carbides varied depending on the tempering temperatures ($450{\sim}720^{\circ}C$). During the tempering process, the carbide was precipitated in the martensite matrix. The 0.35C, 0.2C-Cr, and 0.2C-Cr-Mo steels contained carbides that were smaller than 120 nm. The carbide was spheroidized as the tempering temperature increased. Owing to the fine microstructure and spheroidization of the carbides, all three steels had a high tensile strength as well as yield ratio and reduction of area. In the case of the 0.2C-Cr steel, the use of Cr as an alloying element facilitated the precipitation of alloyed carbides with an extremely small particle and resulted in an increase in the spheroidization rate of the carbides. As a result, a large reduction of area was achieved (>70%). The 0.2C-Cr-Mo steel had the highest tensile strength because of the high hardenability that can be attributed to the presence of alloying elements (Cr and Mo). Quenching and tempering steels by induction heat treatment resulted in a high strength of over 1 GPa and a large reduction of area (>70%) because of the rapid heating and cooling rates.

초고탄소강의 제어압연에 의한 세멘타이트의 구상화와 냉각중 마르텐사이트의 핵발생과 성장의 현상론적 고찰 (Study on the Spheroidization of Cementite by Controlled-Rolling and Martensitic Nucleation and its Growth during Cooling in Ultra High Carbon Steel)

  • 최종술;윤진국
    • 열처리공학회지
    • /
    • 제6권2호
    • /
    • pp.98-106
    • /
    • 1993
  • Ultra high carbon steel (Fe-1.4%C) was prepared by means of a high frequency induction furnace. The preferred nucleation site of martensite was observed. The changes of hardness and impact thoughness due to tempering temperatures, and the spheroidization of cementite by controlled -rolling were also studied for the steel. The preferred nucleation site of martensite in the ultra high carbon steel is prior austenite grain boundary. The hardness of the steel is slightly increased up to about $300^{\circ}C$, and then decreased with further tempering temperature. However, the impact energy keeps a almost constant value, independent of the tempering temperature. The spheroidization of cementite is accelerated as the reduction in thickness per rolling pass is increased and the number of the rolling passes becomes greater.

  • PDF

강재의 충격피로파괴수명에 미치는 tempering 효과에 관한 연구 (Effect of tempering on the repeated impact fatique life of the steel)

  • 정재천
    • 오토저널
    • /
    • 제3권3호
    • /
    • pp.30-38
    • /
    • 1981
  • The fatigue characteristics of Si-Mn spring steel (AISI 9260-H, JIS SUP-6) were investigated on several heat treatment conditions. Repeated impact loads of 10kg-cm and 15kg-cm energy were applied with a cam roller drop hammer type impact fatigue testing machine. Specimens were oil-quenched, and tempered at 350.deg. C, 450.deg. C and 500.deg. C, respectively. Results obtained in these experiments are summarized as follows.; 1) The fatigue life of the specimen is decreased as the magnitude of constant impact energy is increased, regardless of heat treatment. 2) Generally, the fatigue life of the specimen is decreased as the tensile strength of the materials is increased. 3) Within the limit of these experiments, the fatigue life showed abrupt decrease at the tempering temperature of about 400.deg. C 4) The fatigue life is increased as the initial value of applied stress intensity factor(K$_{1}$) is decreased. This tendency is apparent for the low tensile strength materials.

  • PDF