DOI QR코드

DOI QR Code

Tensile Properties of Energy Saving Wire (ESW) with respect to Temperatures of High Frequency Induction Heat Treatment

고주파 열처리 온도에 따른 선조질강의 인장특성

  • Lee, Jin Beom (Department of Materials Science and Engineering, Pusan National University) ;
  • Kang, Namhyun (Department of Materials Science and Engineering, Pusan National University) ;
  • Park, Ji Tae (Samhwa Steel) ;
  • Ahn, Soon-Tae (Samhwa Steel) ;
  • Park, Yeong-Do (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Choi, Il-Dong (Department of Marine Equipment Engineering, Korea Maritime University) ;
  • Nam, Dae-Geun (Dongnam Technology Service Division, Korea Institute of Industrial Technology) ;
  • Cho, Kyung-mox (Department of Materials Science and Engineering, Pusan National University)
  • 이진범 (부산대학교 재료공학과) ;
  • 강남현 (부산대학교 재료공학과) ;
  • 박지태 (삼화강봉(주) R&D Center) ;
  • 안순태 (삼화강봉(주) R&D Center) ;
  • 박영도 (동의대학교 신소재공학과) ;
  • 최일동 (해양대학교 조선기자재공학부) ;
  • 남대근 (한국생산기술연구원 동남권기술지원본부) ;
  • 조경목 (부산대학교 재료공학과)
  • Received : 2010.09.02
  • Published : 2010.11.25

Abstract

Various types of steel, namely, 0.35C, 0.2C-Cr, and 0.2C-Cr-Mo steels, were quenched and tempered by high-frequency induction heat treatment. The type, size, and spheroidization of the carbides varied depending on the tempering temperatures ($450{\sim}720^{\circ}C$). During the tempering process, the carbide was precipitated in the martensite matrix. The 0.35C, 0.2C-Cr, and 0.2C-Cr-Mo steels contained carbides that were smaller than 120 nm. The carbide was spheroidized as the tempering temperature increased. Owing to the fine microstructure and spheroidization of the carbides, all three steels had a high tensile strength as well as yield ratio and reduction of area. In the case of the 0.2C-Cr steel, the use of Cr as an alloying element facilitated the precipitation of alloyed carbides with an extremely small particle and resulted in an increase in the spheroidization rate of the carbides. As a result, a large reduction of area was achieved (>70%). The 0.2C-Cr-Mo steel had the highest tensile strength because of the high hardenability that can be attributed to the presence of alloying elements (Cr and Mo). Quenching and tempering steels by induction heat treatment resulted in a high strength of over 1 GPa and a large reduction of area (>70%) because of the rapid heating and cooling rates.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. B. K. Kyu and K. S. Lee, Kor. J. Mater. Res. 7, 999 (1997).
  2. S. H. Lee, G. T. Lee, Y. N. Kwon, and J. H. Kim, Transactions of Materials Processing 15, 621 (2006). https://doi.org/10.5228/KSPP.2006.15.8.621
  3. D. R. Lee, Transactions of Materials Processing 11, 388 (2002). https://doi.org/10.5228/KSPP.2002.11.5.388
  4. H. Demir, Int. J. Adv. Manuf. Technol. 35, 1041 (2008). https://doi.org/10.1007/s00170-007-1050-8
  5. S. T. Ahn, K. M. Cho, and S. L. Lee, J. Kor. Inst. Met. & Mater. 40, 252 (2002).
  6. S. E. Nam and D. N. Lee, Journal of Materials Science 22, 2319 (1987). https://doi.org/10.1007/BF01082110
  7. A. K. Gogia and A. M. Gokhale, Met. Trans. 11A, 1077 (1980).
  8. C. C. Chou, P. W. Kao, and G. H. Cheng, Met. & Mater. Trans. A 21, 3339 (1986).
  9. J. T. Park, M. S. Joun, J. G. Eom, J. H. Kim, and D. J. Youn, Transactions of Materials Processing p.439 (2008).
  10. D. A. Porter and K. E. Easterling, Phase Transformations in metals and alloys, p.417-428, 2nd Ed., Taylor & Francis (2004).
  11. N. V. Luzginova, L. Zhao, and J. Sietsma, Met. & Mater. Trans. A 39A, 513 (2008).
  12. S. S. Babu, K. Hono, and T. Sakurai, Met. & Mater. Trans. A 25A, 499 (1994).
  13. S. T. Ahn and S. R. Lee, J. Kor. Inst. Met. & Mater. 40, 162 (2002).
  14. F. Han, B. Hwang, D. W. Suh, Z. Wang, D. L. Lee, and S. J. Kim, Met. Mater. Int. 14, 667 (2008). https://doi.org/10.3365/met.mat.2008.12.667
  15. J. B. Lee, N. H. Kang, J. T. Park, S. T. Ahn, Y. D. Park, I. D. Choi, and K. M Cho, Mat. Sci. Eng. A (in press).
  16. J. S. Lee, S. W. Choi, B. J. Park, J. H. Jung, H. Y. Jung, and S. D. Park, POSCO 12, 76 (2007).
  17. Forging Industry Association, Forging Solutions, http:// www.forging.org (2007).
  18. S. W. Kim and B. C. Ko, RIST 18, 86 (2004).