• Title/Summary/Keyword: Temperature test

Search Result 10,099, Processing Time 0.041 seconds

Electric Current Accelerated Degradation Test Design for OLED TV (OLED TV Panel의 전류가속열화시험 설계)

  • You, Ji-Sun;Lee, Duek-Jung;Oh, Chang-Suk;Jang, Joong Soon
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • Purpose: The purpose of this study is to estimate the life time of OLED TV panel through electric current ADT(Accelerated Degradation Test). Methods: We performed accelerated degradation test for OLED TV Panel at the room temperature to avoid high temperature impact on the luminance. Results: we got more accurately the life time of the OLED TV when we applied ADT without temperature factor than including both current and temperature. Conclusion: Until now, the ADT of the OLED TV has been conducted with temperature and current at the same time for reducing test time and costs. We estimate incorrect life time when the temperature is adopted as an accelerated factor. Due to the high temperature impact on the luminance of the OLED TV panel. So as to solve this problem, we discard temperature and use electric current only.

Study on Influences and Elimination of Test Temperature on PDC Characteristic Spectroscopy of Oil-Paper Insulation System

  • Liu, Xiao;Liao, Ruijin;Lv, Yandong;Liu, Jiefeng;Gao, Jun;Hao, Jian
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1107-1113
    • /
    • 2015
  • Test temperature is an important factor affecting the measurement results of dielectric response of field power transformers. In order to better apply the polarization and depolarization current (PDC) to the condition monitoring of oil-paper insulation system in power transformers, the influences and elimination method of test temperature on PDC characteristic spectroscopy (PDC-CS) were investigated. Firstly, the experimental winding sample was measured by PDC method at different test temperatures, then the PDC-CS was obtained from the measurement results and its changing rules were discussed, which show that the PDC-CS appears a horizontal mobility with the rise of temperature. Based on the rules, the “time temperature shift technique” was introduced to eliminate the influence of test temperature. It is shown that the PDC-CS at different test temperatures can be converted to the same reference temperature coincident with each other.

Design Controller For Rapidity Temperature Measurement-system (넓은 영역의 온도범위를 가지는 급속 온도특성측정시스템 컨트롤러 설계)

  • 신광식;정완영
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.33-36
    • /
    • 2001
  • An automatic TCXO frequency-temperature test apparatus was firstly developed by using thermoelectric device may. The developed system swing stably the test temperature range from -40$^{\circ}C$ to +80$^{\circ}C$ for about 1 hour The rising temperature ratio was fairly linear with time in this test temperature range. The temperature could be controlled error in error range of ${\pm}$0.05$^{\circ}C$ in this system. The frequency-Temperature properties of TCXO or the thermoelectric properties of other electric device.

  • PDF

Low Temperature Test of HWR Cryomodule

  • Kim, Heetae;Kim, Youngkwon;Lee, Min Ki;Park, Gunn-Tae;Kim, Wookang
    • Applied Science and Convergence Technology
    • /
    • v.25 no.3
    • /
    • pp.47-50
    • /
    • 2016
  • Low temperature test for half-wave resonator (HWR) cryomodule is performed at the superfluid helium temperature of 2 K. The effective temperature is defined for non-uniform temperature distribution. Helium leak detection techniques are introduced for cryogenic system. Experimental set up is shown to make the low temperature test for the HWR cryomodule. The cooldown procedure of the HWR cryomodule is shown from room temperature to 2 K. The cryomodules is precooled with liquid nitrogen and then liquid helium is supplied to the helium reservoirs and cavities. The pressure of cavity and chamber are monitored as a function of time. The vacuum pressure of the cryomodule is not increased at 2 K, which shows leak-tight in the superfluid helium environment. Static heat load is also measured for the cryomodule at 2.5 K.

Ground High/Low Temperature Test for FA-50 Aircraft (FA-50 경공격기 전기체 지상 고/저온시험)

  • Ahn, Jong Hoon;Kim, Tae Ho;Woo, Seung Cheol;Cho, Young Kyun;Kim, Do Wan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The ground high/low temperature test objective is to check the normal ground operation of FA-50 aircraft in the extreme ground ambient conditions. The aircraft was exposed in climatic conditions of the basic climatic category according to the MIL-HDBK-310. For verified normal operation in the extreme high temperature, the high temperature test was performed in the hot regional type conditions and accentuated solar radiation heat. This test was performed at the test chamber in ADD where is in Haemi. This paper was described about the test procedure of FA-50 high/low temperature including preparation, testing and results.

  • PDF

A Study on Improvement of the low temperature flex resistance test method about high waterproof materials (고기능성 투습방수 소재의 저온굴곡 시험방법 개선 연구)

  • Lee, Minhee;Moon, Sunjeong;Ko, Hyeji;Hong, Seongdon
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.3
    • /
    • pp.425-440
    • /
    • 2018
  • Purpose: This study is aimed at developing of the flex resistance testing process at low temperature with the waterproof fabric to suit the military environment, and is designed to fit for the purpose of the waterproof materials in order to optimize the test method by finding out matters to improve from existing the test method and through previous studies. Methods: The test method, which has been applied to flex resistance of existing water-repellent materials, was improved and consequently, differentiated test results could be obtained according to the test temperature, sample size, and flexing method. Results: The testing of the total of 8 samples revealed that performance of the military requirement could hardly be met just by presenting the materials or 2~3 layers when the quality criteria for high functional water repellent fabrics were applied. PTFE(Polytetrafluoroethylene) is preferred to PU(Polyurethane) to be used in the extremely low-temperature environment, but durability under the low-temperature environment may be varied depending on film thickness or laminating technique even if the materials of waterproof films are identical. Therefore, in addition to the material or texture, the test method capable of reflecting durability under the low-temperature environment shall be suggested, and the newly designed test method proposed in this study was shown to suggest differentiated quality criteria by the material. Conclusion: The water resistance measurement and the test method following flex resistance with expanded range of flex will enable the differentiable test of the samples according to the number of repetition. This study is meaningful in that it suggests a differentiable test method capable of establishing a basis of deciding suitable material when selecting military goods made of water repellent material by properly improving the test method.

Reliability Characteristics of a Package-on-Package with Temperature/Humidity Test, Temperature Cycling Test, and High Temperature Storage Test (온도/습도 시험, 온도 싸이클링 시험 및 고온유지 시험에 따른 Package-on-Package의 신뢰성)

  • Park, Donghyun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.43-49
    • /
    • 2016
  • Reliability characteristics of thin package-on-packages were evaluated using T/H (temperature/humidity) test at $85^{\circ}C/85%$ for 500 hours, TC (temperature cycling) test at $-40{\sim}100^{\circ}C$ for 1,000 cycles, and HTS (high temperature storage) test at $155^{\circ}C$ for 1,000 hours. The average resistance of the solder-bump circuitry between the top and bottom packages of 24 package-on-package (PoP) samples, which were processed using polyimide thermal tape, was $0.56{\pm}0.05{\Omega}$ and quite similar for all 24 samples. Open failure of solder joints did not occur after T/H test for 500 hours, TC test for 1,000 cycles, and HTS test for 1,000 hours, respectively.

Effects of Test Temperature on the Reciprocating Wear of Steam Generator Tubes

  • Hong, J.K.;Kim, I.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.379-380
    • /
    • 2002
  • Steam generators (S/G) of pressurized water reactors are large heat exchangers that use the heat from the primary reactor coolant to make steam in the secondary side for driving turbine generators. Reciprocating sliding wear experiments have been performed to examine the wear properties of Incoloy 800 and Inconel 690 steam generator tubes in high temperature water. In present study, the test rig was designed to examine the reciprocating and rolling wear properties in high temperature (room temperature - $300^{\circ}C$) water. The test was performed at constant applied load and sliding distance to investigate the effect of test temperature on wear properties of steam generator tube materials. To investigate the wear mechanism of material, the worn surfaces were observed using scanning electron microscopy. At $290^{\circ}C$, wear rate of Inconel 690 was higher than that of Incoloy 800. It was assumed to be resulted from the oxide layer property difference due to the a\loy composition difference. Between 25 and $150^{\circ}C$ the wear loss increased with increasing temperature. Beyond $150^{\circ}C$, the wear loss decreased with increasing temperature. The wear loss change with temperature were due to the formation of wear protective oxide layer. From the worn surface observation, texture patterns and wear particle layers were found. As test temperature increased, the proportion of particle layer increased.

  • PDF

Joule Heating Effects and Initial Resistance in Electromigration Test (EM시험에서의 Joule Heating 영향 및 초기저항값)

  • Ju, Cheol-Won;Gang, Hyeong-Gon;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.436-441
    • /
    • 1999
  • Joule heating effect in EM(Electromigration) test were performed on a bend test structure. EM test is done under high current densities(1.0-2.5MA/cm2), which leads to joule heating. Since joule heating is added to the controlled oven(stress) temperature, themetal line temperature is higher than the stress temperature. The increase in the stress temperature due to joule heating is important because EM phenomena and metal line failure are related to the stress temperature. In this paper, metal line was stressed with a current density of 1.0 MA/$cm^2$, 1.5MA/$cm^2$, 2.0MA/$cm^2$, 2.5MA/$cm^2$, for 1200 sec and temperature increase due to joule heating was less than $10^{\circ}C$. Also it took 30 minutes for the metal line to equalized with oven temperature. Recommendations are given for the EM test to determine the initial resistance of EM test structure under stress temperature and current density.

  • PDF

A Study on the Usefulness of Development of a Steam Sterilizer Equipped with an Electronic Bowie-Dick Test System

  • Bae, Young Ok;Hwang, Jun Soo;Kim, Sung Il;Lee, Joon Ha
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.156-163
    • /
    • 2017
  • To verify the usefulness of a steam sterilizer equipped with an electronic Bowie-Dick test system, this study was carried out using two methods, utilizing both a steam sterilizer and an electronic Bowie-Dick tester. The first method is to confirm the error detection of the chemical Bowie-Dick test pack and the electronic Bowie-Dick tester in a malfunctioning sterilizer environment. For this purpose, the Bowie-Dick test program for the steam sterilizer was used to test three types of test packs commonly used in hospitals and the electronic Bowie-Dick tester by changing the set values of temperature, time, and vacuum frequency. The second is an experiment to check the sterilizer's normal operation with the electronic Bowie-Dick tester and the usefulness of grasping the cause of the malfunction. The results showed that the sterilization temperature was the same as that of the test pack at a temperature $1{\sim}6^{\circ}C$ lower than the reference temperature of $134^{\circ}C$. In the test with the sterilization exposure time as a variable, there was a normal discoloration at a time difference of 30~90 s. In the experiment using the number of vacuum cycles, the test was correct by performing the normal discoloration only at the normal condition of 3 times. The test results of 30 hospitals were 100 failure tests by a total of 291 Bowie-Dick tests. Of these, the failure factors related to an internal temperature that the chemical test packs could not detect were the greatest, and the four factors related to temperature, including the internal temperature, were found to be 71.18% of total malfunctions. In addition, the Bowie-Dick tester was provided within 30 min after the start of the Bowie-Dick test to confirm the performance of the sterilizer and the detailed cause. A steam sterilizer equipped with an electronic Bowie-Dick test system is used to manage individual sterilizers. In the current steam sterilizer with many temperature-related errors, it is possible to check the malfunction of the temperature difference that the test pack cannot detect, and the cause of error for the sterilizer is immediately detected after the test. The steam sterilizer equipped with the electronic Bowie-Dick test system assists with infection control with accurate sterilizer performance assurance.