• Title/Summary/Keyword: Temperature stability time

Search Result 875, Processing Time 0.036 seconds

Effect of Plating Condition and Plating Rate on the Magnetic Properties of Electroless Ni-Cu-P Deposits (무전해 Ni-Cu-P 도금층의 자성에 미치는 도금조건과 도금속도의 영향)

  • Oh, I.S.;Lee, T.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.58-66
    • /
    • 2006
  • The effect of bath composition, plating condition and plating rate on the magnetic properties of electroless Ni-Cu-P deposits were investigated. With increasing $CuSO_4$ concentration in the bath, plating rate increased, while the Br value of deposits decreased Sharply. Plating rate increased up to 34% with the addition of 200ppm of NaF and 0.8ppm of Thiourea to the bath. Plating reaction had been ceased by the increase of pH above 11.3, bath temperature higher than $90^{\circ}C$ and under $70^{\circ}C$. The Br value of deposit was uniform with various concentration of complexing agent (Sodium citrate, Ethylenediamine) in the bath. The Br value of deposit was almost equal to that found by the addition of stabilizer(Thiourea) and accelerator(NaF). The Br value of deposit was uniform in plating time(120 min) and heat treatment temperature(below $200^{\circ}C$), and were confirmed to have adequate bath stability for practical use.

  • PDF

Infrared Light Absorbance: a New Method for Temperature Compensation in Nondispersive Infrared CO2 Gas Sensor

  • Yi, Seung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.303-311
    • /
    • 2020
  • Nondispersive infrared CO2 gas sensor was developed after the simulation of optical cavity structure and assembling the optical components: IR source, concave reflectors, Fresnel lens, a hollow disk, and IR detectors. By placing a hollow disk in front of reference IR detector, the output voltages are almost constant value, near to 70.2 mV. The absorbance of IR light, Fa, shows the second order of polynomial according to ambient temperatures at 1,500 ppm. The differential output voltages and the absorbance of IR light give a higher accuracy in estimations of CO2 concentrations with less than ± 1.5 % errors. After implementing the parameters that are dependent upon the ambient temperatures in microcontroller unit (MCU), the measured CO2 concentrations show high accuracies (less than ± 1.0 %) from 281 K to 308 K and the time constant of developed sensor is about 58 sec at 301 K. Even though the estimation errors are relatively high at low concentration, the developed sensor is competitive to the commercial product with a high accuracy and the stability.

Magnetic Properties of Micron Sized Fe3O4 Crystals Synthesized by Hydrothermal Methods (수열합성을 이용하여 제작한 Fe3O4 결정입자의 자기적 특성)

  • Lee, Ki-Bum;Nam, Chunghee
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.481-486
    • /
    • 2019
  • Iron oxides currently attract considerable attention due to their potential applications in the fields of lithiumion batteries, bio-medical sensors, and hyperthermia therapy materials. Magnetite (Fe3O4) is a particularly interesting research target due to its low cost, good biocompatibility, outstanding stability in physiological conditions. Hydrothermal synthesis is one of several liquid-phase synthesis methods with water or an aqueous solution under high pressure and high temperature. This paper reports the growth of magnetic Fe3O4 particles from iron powder (spherical, <10 ㎛) through an alkaline hydrothermal process under the following conditions: (1) Different KOH molar concentrations and (2) different synthesis time for each KOH molar concentrations. The optimal condition for the synthesis of Fe3O4 using Fe powders is hydrothermal oxidation with 6.25 M KOH for 48 h, resulting in 89.2 emu/g of saturation magnetization at room temperature. The structure and morphologies of the synthesized particles are characterized by X-ray diffraction (XRD, 2θ = 20°-80°) with Cu-kα radiation and field emission scanning electron microscopy (FE-SEM), respectively. The magnetic properties of magnetite samples are investigated using a vibrating sample magnetometer (VSM). The role of KOH in the formation of magnetite octahedron is observed.

Purification and Characteristics of Pullulanase from Bacillus cereus subsp. mycoides (Bacillus cereus subsp. mycoides가 생산하는 Pullulanase의 정제와 특성)

  • Chung, Man-Jae;Woo, Jeong-Suk;Cho, Dae-Sun;Lee, Myong-Yur;Park, Nam-Kyu
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.73-79
    • /
    • 1994
  • The optimum cultural temperature and time for the pullulanase production by Bacillus cereus subsp. mycoides were 35$\circ $C and 48 hrs, respectively. The addition of egg albumin and casein to the basal medium increased the enzyme production. The enzyme was purified by ammonium sulfate fractionation and DEAE-cellulose column chromatography. specific activity of the purified enzyme was 82.37 U/mg protein and yield of theenzyume activity was 62.1%. The purified enzuyme showed a single band on ployacrylamide disc gel electrophoresis and its molecular weight was estimated to be 66.,000 by SDS-polyacrylamide disc gel electrophoresis. The isoelcular point for the purified enzyme was pH 5.0. The optimum temperature and pH were 50$\circ $C and pH 6.5, respectively. The purified enzyme was stable below 40$\circ $C and in the pH range of 6.5~10.0 The pullulanase activity was greatly inhited by Ag$^{+}$, Hg$^{2+}$ and EDTA, and its heat stability was increased by the addition of Ca$^{2+}$. The tydrolysis product with the enzyme on pullulan was maltotriose.

  • PDF

A Study on the cooling system design for electric propulsion system in submarine (수중체 전기추진시스템용 냉각체계 설계에 관한 연구)

  • Oh, Jin-Seok;Jung, Sung-Young
    • Journal of Navigation and Port Research
    • /
    • v.36 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • In this paper, we analyze the current submarine cooling system and study control algorithms for cooling system. Cooling system are installed in the submarine propulsion motor to protect the motor from high-temperature by iron loss and copper loss. The cooling system control the sea water and fresh water pump RPM to keep the motor temperature stable by external environment and motor RPM holding time. The cooling system simulation program is made for checking the cooling performance, and simulation is performed with various control strategy. The results with proposed cooling algorithm is shown to improve the thermal stability and efficiency of cooling system.

Surface Acoustic Wave Characteristics of PSS-PZT Cermaics with Cr addition (Cr 첨가에 따른 PSS-PZT 세라믹스의 탄성 표면파 특성)

  • 홍재일;유주현;김준한;강진규;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.68-72
    • /
    • 1991
  • In this study, to improve temperature stability 0.05 Pb(Sn$\_$$\frac{1}{2}$/Sb$\_$$\frac{1}{2}$/O$_3$ - 0.35PbTiO$_3$ - 0.60PbZrO$_3$ + 0.4[wt%]MnO$_2$ piezoelctric oeramics of low dielectric constant and large mechanical quality factor were manufactured with the addition of Cr$_2$O$_3$by Hot Press method. And the SAW delay line was fabricated and the propagation characteristics of SAW was investigated, and the SAW filter was fabricated on C4 added by 0.2[wt%] Cr$_2$O$_3$and its frequency characteristics was investigated. The specimen, whose propagation characteristics of surface acoustic wave were the best, was C4 added by 0.2[wt%] Cr$_2$O$_3$, and its electromechanical coupling factor(ks$^2$) was 3.11[%] and its temperature coefficient of the center frequency (C$\_$fo/) was -21.27[ppm/$^{\circ}C$]. The 31[MHz] SAW IF filter of C4 scarcely had diffraction phenomena and its group delay time was 1.4673 ${\pm}$40[ns] in the pass band, and the insertion loss was -24.419[dB] on no impedance matching.

Immobilization of jack bean (Canavalia ensiformis) urease on gelatin and its characterization

  • Kumar, Sandeep;Kansal, Ajay;Kayastha, Arvind M
    • Advances in Traditional Medicine
    • /
    • v.5 no.1
    • /
    • pp.43-47
    • /
    • 2005
  • Jack bean urease was immobilized on gelatin beads with the help of glutaraldehyde. The optimum immobilization (67.6%) was obtained at 30mg/ml gelatin concentration, 0.5 mg/bead enzyme protein concentration, 1 % glutaraldehyde and at $4^{\circ}C$ incubation temperature. The $t_{1/2}$ of immobilized urease was approximately 90 days at $4^{\circ}C$ compared with $t_{1/2}$ of 20 days for the soluble urease, under identical condition. The apparent optimum pH shifted from 7.3 to 8.0 when the urease was immobilized. The optimum stability temperature of immobilized urease was found to be $60^{\circ}C$ while that of soluble urease was $45^{\circ}C$. Time-dependent thermal inactivation studies showed monophasic kinetics for soluble urease and immobilized urease at $70^{\circ}C$, respectively. The immobilized urease beads stored at $4^{\circ}C$ showed practically no leaching over a period of 30 days. Here we are presenting an easy and economical way of immobilizing urease on the gelatin beads making it suitable for various applications.

Status of the technology development of large scale HTS generators for wind turbine

  • Le, T.D.;Kim, J.H.;Kim, D.J.;Boo, C.J.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.18-24
    • /
    • 2015
  • Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design - operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study.

Emulsification Activity of Acinetobacter sp. 2-3A Isolated from Petroleum Oil-Contaminated Soil (유류오염 토양에서 분리한 Acinetobacter sp. 2-3A의 유화활성)

  • Lim, Ji-Hyun;Jeong, Seong-Yun
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1261-1270
    • /
    • 2009
  • Fifty hydrocarbon-metabolizing microorganisms were isolated from soil samples polluted by the petroleum oils in Gamman-dong, Busan. Among them, strain 2-3A, showing strong emulsification activity, was selected by oil film-collapsing method. This bacterium was identified as Acinetobacter sp. and designated as Acinetobacter sp. 2-3A. The optimum temperature and pH on the growth of Acinetobacter sp. 2-3A were $25^{\circ}C$ and pH 7.0, respectively. The carbon and nitrogen sources for the most effective emulsification activity were 3.0% olive oil and 0.5% peptone, respectively. The 0.15% potassium phosphate was the most effective emulsification activity as a phosphate source. The optimum emulsification activity condition was $20^{\circ}C$, pH 7.0, and 2.0% NaCl. The optimum time for the best production of biosurfactant was 27 hrs. The emulsification stability was maintained at the temperature range from $4^{\circ}C$ to $100^{\circ}C$, pH range from 6.0 to 10.0, and NaCl range from 0% to 10%. For the oil resolvability of the biosurfactant, the residual oils were investigated by gas chromatography. As a result, it was verified that the biosurfactant decreased and decomposed crude oils from $_nC_{10}$ to $_nC_{32}$.

A Study of Photo-electric Efficiency Improvement using Ultrasonic and Thermal Treatment on Photo-electrode of DSC (염료감응형 태양전지 광전극의 초음파 열처리를 통한 광전효율 개선에 관한 연구)

  • Kim, Hee-Je;Kim, Yong-Chul;Choi, Jin-Young;Kim, Ho-Sung;Lee, Dong-Gil;Hong, Ji-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.803-807
    • /
    • 2008
  • A making process of DSC(dye sensitized solar cell) was presented. In general, Photo electrodes of DSC was made by using colloid paste of nano $TiO_2$ and processing of Doctor-blade printing and high temperature sintering for porous structure. These methods lead to cracks on $TiO_2$ surface and ununiform of $TiO_2$ thickness. This phenomenon is one factor that makes low efficiency to cells. After $TiO_2$ printing on TCO glass, a physical vibration was adapted for reducing ununiform of $TiO_2$ thickness. And a thermal treatment at low temperature(under $75^{\circ}C$) was adapted for reducing cracks on $TiO_2$ surface. In this paper, we have designed and manufactured an ultrasonic circuit (100W, frequency and duty variable) and a thermal equipment. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation and thermal heating for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against monolithic DSC. And it shows stability of light-harvesting from drastically change of light irradiation test.