DOI QR코드

DOI QR Code

Status of the technology development of large scale HTS generators for wind turbine

  • Le, T.D. (Department of Electrical Engineering, Jeju National University) ;
  • Kim, J.H. (Department of Electrical Engineering, Jeju National University) ;
  • Kim, D.J. (Department of Electrical Engineering, Jeju National University) ;
  • Boo, C.J. (Department of Electrical Energy Engineering, Jeju International University) ;
  • Kim, H.M. (Department of Electrical Engineering, Jeju National University)
  • Received : 2015.06.04
  • Accepted : 2015.06.23
  • Published : 2015.06.30

Abstract

Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design - operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study.

Keywords

References

  1. F. Manzano-Agugliaro, A. Alcayde, F. G. Montoya, A. Zapata-Sierra, and C. Gil, "Scientific production of renewable energies worldwide: A overview," Renew. Sust. Energy Rev., vol. 18, pp. 134-143, 2013. https://doi.org/10.1016/j.rser.2012.10.020
  2. J. Terrapon-Pfaff, C. Dienst, J. Konig, and W. Ortiz, "A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries," Renew. Sust. Energy Rev., vol. 40, pp. 1-10, 2014. https://doi.org/10.1016/j.rser.2014.07.161
  3. C. F. A. Rodrigues, M. A. P. Dinis, and M. J. L. Sousa, "Review of European energy policies regarding the recent "carbon capture, utilization and storage" technologies scenario and the role of coal seams," Environ. Earth Sci., (DOI: 10.1007/s12665-015-4275-0), 2015.
  4. C. L. Benson and C. L. Magee, "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, vol. 68, pp. 745-751, 2014. https://doi.org/10.1016/j.renene.2014.03.002
  5. Renewables global status report 2014, REN21, 2014.
  6. Doubling the global share of renewable energy a roadmap to 2030, IRENA, 2013.
  7. Y. A. Kaplan, "Overview of wind energy in the world and assessment of current wind energy policies in Turkey," Renew. Sust. Energy Rev., vol. 43, pp. 562-568, 2015. https://doi.org/10.1016/j.rser.2014.11.027
  8. R. Kenny, C. Law, and J. M. Pearce, "Towards real energy economics: energy policy driven by life-cycle carbon emission," Energy Policy, vol. 38, pp. 1969-1978, 2010. https://doi.org/10.1016/j.enpol.2009.11.078
  9. A. Evans, V. Strezov, and T. J. Evans, "Assessment of sustainability indicators for renewable energy technologies," Renew. Sust. Energy Rev., vol. 13, pp. 1082-1088, 2009. https://doi.org/10.1016/j.rser.2008.03.008
  10. M. Jacobson and M. A. Delucchi, "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, vol. 39, no. 3, pp. 1154-1169, 2011. https://doi.org/10.1016/j.enpol.2010.11.040
  11. O. Keysan, "Future electrical generator technologies for offshore wind turbines," Eng. Technol. Ref., pp. 1-11, (DOI: 10.1049/etr.2014.0020), 2015.
  12. World Energy Outlook, IEA, 2013.
  13. G. M. J. Herbert, S. Iniyan, E. Sreevalsan, and S. Rajapandian, "A review of wind energy technologies," Renew. Sust. Energy Rev., vol. 11, pp. 1117-1145, 2007. https://doi.org/10.1016/j.rser.2005.08.004
  14. C. L. Archer and M. Z. Jacobson, "Evaluation of global wind power," J. Geophys. Res., vol. 110, D12110, (DOI: 10.1029/2004JD005462), 2005.
  15. New record in worldwide wind installation, WWEA, 2015.
  16. A renewable energy roadmap 2030, IREA, 2014.
  17. M. Caduff, M. A. J. Huijbregts, H. J. Althasus, A. Koehler, and S. Hellweg, "Wind power electricity: the bigger the turbine, the greener the electricity," Environ. Sci. Technol., vol. 46, pp. 4725-4733, 2012. https://doi.org/10.1021/es204108n
  18. J. Lloberas, A. Sumper, M. Sanmarti, and X. Granados, "A review of high temperature superconductors for offshore wind power synchronous generators," Renew. Sust. Energy Rev., vol. 38, pp. 404-414, 2014. https://doi.org/10.1016/j.rser.2014.05.003
  19. D. Zhou, Mitsuru, M. Miki, B. Felder, T. Ida, and M. Kitan, "An overview of rotating machine systems with high temperature bulk superconductors," Supercond. Sci. Technol. 25, p.103001, 2012. https://doi.org/10.1088/0953-2048/25/10/103001
  20. W. Tong, Wind Power Generation and Wind Turbine Design. Southampton, WIT Press, 2010.
  21. J. Wang, R. Qu, Y. Liu, J. He, Z. Zhu, and H. Fang, "Comparison study of superconducting wind generators with HTS and LTS field windings," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5201806, 2015.
  22. V. Matias and R. H. Hammond, "HTS superconductor wire:$5/kAm by 2030," CCA2014 Conference, S. Korea, 2014, ID: LL_IS_002.
  23. S. H. Moon, "Recent progress of 2G superconducting wire in SuNAM," CCA2014 Conference, S. Korea, 2014, ID: LL_IS_003.
  24. H. J. Sung, G. H. Kim, K. M. Kim, S. J. Jung, M. Park, I. K. Yu, Y. G. Kim, H. G. Lee, and A. R. Kim, "Practical design of a 10 MW superconducting wind power generator considering weight issue," IEEE Trans. Appl. Supercond., vol. 23, no. 3, p. 5201805, 2013. https://doi.org/10.1109/TASC.2013.2245175
  25. http://www.3ghts.com/
  26. B. Chen, G. B. Gu, G. Q. Zhang, F. C. Song, and C. H. Zhao, "Analysis and design of cooling system in high temperature superconducting synchronous machines," IEEE Trans. Appl. Supercond., vol. 17, no. 2, p. 1557, 2007. https://doi.org/10.1109/TASC.2007.898031
  27. J. A. Urbahn, R. A. Ackermann, X. Huang, E. T. Laskaris, K. Sivasubramaniam, and A. Steinbach, "The thermal performance of a 1.5 MVA HTS generator," AIP Conf. Proc. 710, p. 849, 2004.
  28. G. Snitchler, B. Gamble, and S. S. Kalsi, "The performance of a 5 MW high temperature superconductor ship propulsion motor," IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 2206-2209, 2005. https://doi.org/10.1109/TASC.2005.849613
  29. T. D. Le, J. H. Kim, S. I. Park, D. H. Kang, H. G. Lee, Y. S. Jo, Y. S. Yoon, and H. M. Kim, "Thermal design of a cryogenics cooling system for a 10 MW-class high-temperature superconducting rotating machine," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 3800305, 2015.
  30. H. C. Jo et al., "Numerical analysis and design of damper layer for MW-Class HTS synchronous wind turbine," IEEE Trans. Appl. Supercond., vol. 24, no. 3, p. 5200905, 2014.
  31. Y. Iwasa, Case Studies in Superconducting Magnets: Design and Operational Issues, 2nd ed. New York, NY, USA: Springer-Verlag, 2009, pp. 357-358.
  32. S. Hahn et al., "No-insulation (NI) winding technique for premature-quench-free NbTi MRI magnets," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4501004, 2012. https://doi.org/10.1109/TASC.2011.2178970
  33. S. Hahn et al., "No-insulation (NI) HTS inserts for 1 GHz LTS/HTS NMR magnets," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4302405, 2012. https://doi.org/10.1109/TASC.2011.2178976
  34. S. Hahn, D. K. Park, J. Bascunan, and Y. Iwasa, "HTS pancake coils without turn-to-turn insulation," IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 1592-1595, 2011. https://doi.org/10.1109/TASC.2010.2093492
  35. S. Choi et al., "A study on the no insulation winding method of the HTS coil," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4904004, 2012. https://doi.org/10.1109/TASC.2011.2175892
  36. S. W. Yoon et al., "The performance of the conduction cooled 2G HTS magnet wound without turn to turn insulation generating 4.1 T in 102 mm bore," Physica C, vol. 494, pp. 242-245, 2013. https://doi.org/10.1016/j.physc.2013.05.010
  37. Y. H. Choi et al., "Partial insulation of GdBCO single pancake coils for protection-free HTS power applications," Supercond. Sci. Technol., vol. 24, p. 125013, 2011. https://doi.org/10.1088/0953-2048/24/12/125013
  38. Y. G. Kim et al., "Investigation of HTS racetrack coil without turn-to-turn insulation for superconducting rotating machines," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 5200604, 2012. https://doi.org/10.1109/TASC.2011.2181931
  39. K. Kim, B. S. Go, M. Park, and I. K. Yu, "Design and performance analysis of a NI-Type HTS field magnet for superconducting rotating machine," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5203704, 2015.
  40. Y. Xu, N. Maki, and M. Izumi, "Operating temperature influence on performance of 10 MW wind turbine HTS generators," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5200605, 2015.
  41. H. Karmaker, M. Ho, and D. Kulkarni, "Comparison between different design topologies for multi-megawatt direct drive wind generators using improved second generation high temperature superconductors," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5201605, 2015.
  42. Y. Terao, M. Sekino, and H. Ohsaki, "Electromagnetic design of 10 MW class fully superconducting wind turbine generators," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 5201904, 2012. https://doi.org/10.1109/TASC.2011.2177628
  43. Y. Liang, M. D. Rotaru, and J. Sykulski, "Electromagnetic simulation of a fully superconducting 10-MW-class wind turbine generator," IEEE Trans. Appl. Supercond., vol. 23, no. 6, p. 5202805, 2013. https://doi.org/10.1109/TASC.2013.2277778
  44. J. H. Kim, S. I. Park, T. D. Le, and H. M. Kim, "3D electromagnetic design and electrical characteristics analysis of a 10-MW-class high-temperature superconducting synchronous generator for wind power," Prog Supercond and Cryo, vol. 16, no. 2, pp. 47-53, 2014. https://doi.org/10.9714/psac.2014.16.2.047
  45. J. H. Kim, S. I. park, T. D. Le, K. L. Kim, H. G. Lee, Y. S. Jo, Y. S. Yoon, and H. M. Kim, "Characteristics analysis of various structural shapes of superconducting field coils," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5201105, 2015.
  46. Y. Nyanteh, N. Schneider, D. Netter, B. Wei, and P. J. Masson, "Optimization of a 10 MW direct drive HTS generator for minimum levelized cost of energy," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5203504, 2015.

Cited by

  1. Load Test Analysis of High-Temperature Superconducting Synchronous Motors vol.26, pp.4, 2016, https://doi.org/10.1109/TASC.2016.2530662
  2. Analysis of a new design of the hybrid energy storage system used in the residential m-CHP systems vol.187, 2017, https://doi.org/10.1016/j.apenergy.2016.11.058
  3. An experimental assessment of rotor superconducting stack demagnetization in a liquid nitrogen environment vol.32, pp.8, 2015, https://doi.org/10.1088/1361-6668/ab20bf