References
- F. Manzano-Agugliaro, A. Alcayde, F. G. Montoya, A. Zapata-Sierra, and C. Gil, "Scientific production of renewable energies worldwide: A overview," Renew. Sust. Energy Rev., vol. 18, pp. 134-143, 2013. https://doi.org/10.1016/j.rser.2012.10.020
- J. Terrapon-Pfaff, C. Dienst, J. Konig, and W. Ortiz, "A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries," Renew. Sust. Energy Rev., vol. 40, pp. 1-10, 2014. https://doi.org/10.1016/j.rser.2014.07.161
- C. F. A. Rodrigues, M. A. P. Dinis, and M. J. L. Sousa, "Review of European energy policies regarding the recent "carbon capture, utilization and storage" technologies scenario and the role of coal seams," Environ. Earth Sci., (DOI: 10.1007/s12665-015-4275-0), 2015.
- C. L. Benson and C. L. Magee, "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, vol. 68, pp. 745-751, 2014. https://doi.org/10.1016/j.renene.2014.03.002
- Renewables global status report 2014, REN21, 2014.
- Doubling the global share of renewable energy a roadmap to 2030, IRENA, 2013.
- Y. A. Kaplan, "Overview of wind energy in the world and assessment of current wind energy policies in Turkey," Renew. Sust. Energy Rev., vol. 43, pp. 562-568, 2015. https://doi.org/10.1016/j.rser.2014.11.027
- R. Kenny, C. Law, and J. M. Pearce, "Towards real energy economics: energy policy driven by life-cycle carbon emission," Energy Policy, vol. 38, pp. 1969-1978, 2010. https://doi.org/10.1016/j.enpol.2009.11.078
- A. Evans, V. Strezov, and T. J. Evans, "Assessment of sustainability indicators for renewable energy technologies," Renew. Sust. Energy Rev., vol. 13, pp. 1082-1088, 2009. https://doi.org/10.1016/j.rser.2008.03.008
- M. Jacobson and M. A. Delucchi, "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, vol. 39, no. 3, pp. 1154-1169, 2011. https://doi.org/10.1016/j.enpol.2010.11.040
- O. Keysan, "Future electrical generator technologies for offshore wind turbines," Eng. Technol. Ref., pp. 1-11, (DOI: 10.1049/etr.2014.0020), 2015.
- World Energy Outlook, IEA, 2013.
- G. M. J. Herbert, S. Iniyan, E. Sreevalsan, and S. Rajapandian, "A review of wind energy technologies," Renew. Sust. Energy Rev., vol. 11, pp. 1117-1145, 2007. https://doi.org/10.1016/j.rser.2005.08.004
- C. L. Archer and M. Z. Jacobson, "Evaluation of global wind power," J. Geophys. Res., vol. 110, D12110, (DOI: 10.1029/2004JD005462), 2005.
- New record in worldwide wind installation, WWEA, 2015.
- A renewable energy roadmap 2030, IREA, 2014.
- M. Caduff, M. A. J. Huijbregts, H. J. Althasus, A. Koehler, and S. Hellweg, "Wind power electricity: the bigger the turbine, the greener the electricity," Environ. Sci. Technol., vol. 46, pp. 4725-4733, 2012. https://doi.org/10.1021/es204108n
- J. Lloberas, A. Sumper, M. Sanmarti, and X. Granados, "A review of high temperature superconductors for offshore wind power synchronous generators," Renew. Sust. Energy Rev., vol. 38, pp. 404-414, 2014. https://doi.org/10.1016/j.rser.2014.05.003
- D. Zhou, Mitsuru, M. Miki, B. Felder, T. Ida, and M. Kitan, "An overview of rotating machine systems with high temperature bulk superconductors," Supercond. Sci. Technol. 25, p.103001, 2012. https://doi.org/10.1088/0953-2048/25/10/103001
- W. Tong, Wind Power Generation and Wind Turbine Design. Southampton, WIT Press, 2010.
- J. Wang, R. Qu, Y. Liu, J. He, Z. Zhu, and H. Fang, "Comparison study of superconducting wind generators with HTS and LTS field windings," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5201806, 2015.
- V. Matias and R. H. Hammond, "HTS superconductor wire:$5/kAm by 2030," CCA2014 Conference, S. Korea, 2014, ID: LL_IS_002.
- S. H. Moon, "Recent progress of 2G superconducting wire in SuNAM," CCA2014 Conference, S. Korea, 2014, ID: LL_IS_003.
- H. J. Sung, G. H. Kim, K. M. Kim, S. J. Jung, M. Park, I. K. Yu, Y. G. Kim, H. G. Lee, and A. R. Kim, "Practical design of a 10 MW superconducting wind power generator considering weight issue," IEEE Trans. Appl. Supercond., vol. 23, no. 3, p. 5201805, 2013. https://doi.org/10.1109/TASC.2013.2245175
- http://www.3ghts.com/
- B. Chen, G. B. Gu, G. Q. Zhang, F. C. Song, and C. H. Zhao, "Analysis and design of cooling system in high temperature superconducting synchronous machines," IEEE Trans. Appl. Supercond., vol. 17, no. 2, p. 1557, 2007. https://doi.org/10.1109/TASC.2007.898031
- J. A. Urbahn, R. A. Ackermann, X. Huang, E. T. Laskaris, K. Sivasubramaniam, and A. Steinbach, "The thermal performance of a 1.5 MVA HTS generator," AIP Conf. Proc. 710, p. 849, 2004.
- G. Snitchler, B. Gamble, and S. S. Kalsi, "The performance of a 5 MW high temperature superconductor ship propulsion motor," IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 2206-2209, 2005. https://doi.org/10.1109/TASC.2005.849613
- T. D. Le, J. H. Kim, S. I. Park, D. H. Kang, H. G. Lee, Y. S. Jo, Y. S. Yoon, and H. M. Kim, "Thermal design of a cryogenics cooling system for a 10 MW-class high-temperature superconducting rotating machine," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 3800305, 2015.
- H. C. Jo et al., "Numerical analysis and design of damper layer for MW-Class HTS synchronous wind turbine," IEEE Trans. Appl. Supercond., vol. 24, no. 3, p. 5200905, 2014.
- Y. Iwasa, Case Studies in Superconducting Magnets: Design and Operational Issues, 2nd ed. New York, NY, USA: Springer-Verlag, 2009, pp. 357-358.
- S. Hahn et al., "No-insulation (NI) winding technique for premature-quench-free NbTi MRI magnets," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4501004, 2012. https://doi.org/10.1109/TASC.2011.2178970
- S. Hahn et al., "No-insulation (NI) HTS inserts for 1 GHz LTS/HTS NMR magnets," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4302405, 2012. https://doi.org/10.1109/TASC.2011.2178976
- S. Hahn, D. K. Park, J. Bascunan, and Y. Iwasa, "HTS pancake coils without turn-to-turn insulation," IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 1592-1595, 2011. https://doi.org/10.1109/TASC.2010.2093492
- S. Choi et al., "A study on the no insulation winding method of the HTS coil," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 4904004, 2012. https://doi.org/10.1109/TASC.2011.2175892
- S. W. Yoon et al., "The performance of the conduction cooled 2G HTS magnet wound without turn to turn insulation generating 4.1 T in 102 mm bore," Physica C, vol. 494, pp. 242-245, 2013. https://doi.org/10.1016/j.physc.2013.05.010
- Y. H. Choi et al., "Partial insulation of GdBCO single pancake coils for protection-free HTS power applications," Supercond. Sci. Technol., vol. 24, p. 125013, 2011. https://doi.org/10.1088/0953-2048/24/12/125013
- Y. G. Kim et al., "Investigation of HTS racetrack coil without turn-to-turn insulation for superconducting rotating machines," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 5200604, 2012. https://doi.org/10.1109/TASC.2011.2181931
- K. Kim, B. S. Go, M. Park, and I. K. Yu, "Design and performance analysis of a NI-Type HTS field magnet for superconducting rotating machine," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5203704, 2015.
- Y. Xu, N. Maki, and M. Izumi, "Operating temperature influence on performance of 10 MW wind turbine HTS generators," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5200605, 2015.
- H. Karmaker, M. Ho, and D. Kulkarni, "Comparison between different design topologies for multi-megawatt direct drive wind generators using improved second generation high temperature superconductors," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5201605, 2015.
- Y. Terao, M. Sekino, and H. Ohsaki, "Electromagnetic design of 10 MW class fully superconducting wind turbine generators," IEEE Trans. Appl. Supercond., vol. 22, no. 3, p. 5201904, 2012. https://doi.org/10.1109/TASC.2011.2177628
- Y. Liang, M. D. Rotaru, and J. Sykulski, "Electromagnetic simulation of a fully superconducting 10-MW-class wind turbine generator," IEEE Trans. Appl. Supercond., vol. 23, no. 6, p. 5202805, 2013. https://doi.org/10.1109/TASC.2013.2277778
- J. H. Kim, S. I. Park, T. D. Le, and H. M. Kim, "3D electromagnetic design and electrical characteristics analysis of a 10-MW-class high-temperature superconducting synchronous generator for wind power," Prog Supercond and Cryo, vol. 16, no. 2, pp. 47-53, 2014. https://doi.org/10.9714/psac.2014.16.2.047
- J. H. Kim, S. I. park, T. D. Le, K. L. Kim, H. G. Lee, Y. S. Jo, Y. S. Yoon, and H. M. Kim, "Characteristics analysis of various structural shapes of superconducting field coils," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5201105, 2015.
- Y. Nyanteh, N. Schneider, D. Netter, B. Wei, and P. J. Masson, "Optimization of a 10 MW direct drive HTS generator for minimum levelized cost of energy," IEEE Trans. Appl. Supercond., vol. 25, no. 3, p. 5203504, 2015.
Cited by
- Load Test Analysis of High-Temperature Superconducting Synchronous Motors vol.26, pp.4, 2016, https://doi.org/10.1109/TASC.2016.2530662
- Analysis of a new design of the hybrid energy storage system used in the residential m-CHP systems vol.187, 2017, https://doi.org/10.1016/j.apenergy.2016.11.058
- An experimental assessment of rotor superconducting stack demagnetization in a liquid nitrogen environment vol.32, pp.8, 2015, https://doi.org/10.1088/1361-6668/ab20bf