• Title/Summary/Keyword: Temperature separation

Search Result 1,240, Processing Time 0.031 seconds

Polyimide Multilayer Thin Films Prepared via Spin Coating from Poly(amic acid) and Poly(amic acid) Ammonium Salt

  • Ha, You-Ri;Choi, Myeon-Cheon;Jo, Nam-Ju;Kim, Il;Ha, Chang-Sik;Han, Dong-Hee;Han, Se-Won;Han, Mi-Jeong
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.725-733
    • /
    • 2008
  • Polyimide (PI) multilayer thin films were prepared by spin-coating from a poly(amic acid) (PAA) and poly(amic acid) ammonium salt (PAAS). PI was prepared from pyromellitic dianhydride (PMDA) and 4,4'-oxydianiline (ODA) PAA. Different compositions of PAAS were prepared by incorporating triethylamine (TEA) into PMDA-ODA PAA in dimethylacetamide. PI multilayer thin films were spin-coated from PMDA-ODA PAA and PAAS. The PAAS comprising cationic and anionic moieties were spherical with a particle size of $20{\sim}40\;nm$. Some particles showed layers with ammonium salts, despite poor ordering. Too much salt obstructed the interaction between the polymer chains and caused phase separation. A small amount of salt did not affect the interactions of the interlayer structure but did interrupt the stacking between chains. Thermogravimetric analysis (TGA) showed that the average decomposition temperature of the thin films was $611^{\circ}C$. All the films showed almost single-step, thermal decomposition behavior. The nanostructure of the multilayer thin films was confirmed by X -ray reflectivity (XRR). The LF 43 film, which was prepared with a 4:3 molar ratio of PMDA and ODA, was comprised of uniformly spherical PAAS particles that influenced the nanostructure of the interlayer by increasing the interaction forces. This result was supported by the atomic force microscopy (AFM) data. It was concluded that the relationship between the uniformity of the PAAS particle shapes and the interaction between the layers affected the optical and thermal properties of PI layered films.

Nozzle Configurations for Partially Premixed Interacting Jet Flame to Enhance Blowout Limits (화염의 상호작용에 의한 부분 예혼합화염의 화염날림 유속 확대)

  • Kim, Jin-Hyun;Lee, Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.71-79
    • /
    • 2005
  • For the non-premixed interacting jet flames, it has been reported that if eight small nozzles are arranged along the circle of $40{\sim}72$ times the diameter of single jet, the flames are not extinguished even in 200m/s. In this research, experiments were extended to the partially premixed cases to reduce both flame temperature and NOx emission. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric centre. The space between nozzles, S, the equivalence ratio, ${\phi}$, the exit velocity and the role of the jet from the centre nozzle were considered. Normally, flame was lifted and flame base was located inside the imaginary circle made by the nozzle. As nozzles went away from each other, blowout velocity increased and then decreased. The maximum blowout velocity diminished with the addition of air to the fuel stream. When the fuel and/or oxidizer were not fed through the centre nozzle, the maximum blowout velocity obtained by varying S and ${\phi}$ was around 160m/s. Optimum nozzle separation distance at which peak blowout velocity obtained also decreased with ${\phi}$ decrease. Flame base became leaner as approaching to the blowout. It seemed that lots of air was supplied to the flame stabilizing region by the entrainment and partially premixing. To approve this idea and to enhance the blowout velocity, fuel was supplied to the centre region. With the small amount of fuel through the centre nozzle, partially premixed flame could be sustained till sonic velocities. It seemed that the stabilizing mechanism in partially premixed interacting flame was different from that of non-premixed case because one was stabilized by the fuel supply through the centre nozzle but the other destabilized.

Purification and Characterization of an Antioxidant Protein from Fertilized Eggs

  • Yang, Shaohua;Tang, Zhengjiang;Tang, ShanShan;Zhang, Tingfang;Tang, Fei;Wu, Yu;Wang, Ying;Wang, Lu Lu;Liu, Guoqing
    • Food Science of Animal Resources
    • /
    • v.36 no.6
    • /
    • pp.791-798
    • /
    • 2016
  • Free radicals may attack cells or tissue, leading to chronic diseases, and antioxidant consumption is potentially useful for removing free radicals. Egg proteins may be used as potential sources of antioxidant considering their ability of scavenging free radicals to apply for food or cosmetics industry. In this study, we obtained a natural antioxidant protein from fertilized eggs, which was a dietary supplement in some Asian countries. Meanwhile, antioxidant activities of these proteins were evaluated using different oxidation systems. With increasing incubation time, the antioxidant activity of these proteins increased during 15 d of incubation. The samples on day 15 were performed for isolation of antioxidant protein. The protein, named P4-1 (MW, 45 kDa), was isolated and purified by consecutive chromatographic methods. P4-1 contained 17 amino acids, which was determined by liquid chromatography-mass spectrometry and Amino Acid Analyzer. Moreover, the amino acid sequence was highly similar to that of ovalbumin. Differential scanning calorimetry showed that the denaturation temperature of P4-1 was $57.16^{\circ}C$. Furthermore, P4-1 suggested high oxygen radical-absorbance activity in ${\cdot}OH$ assays, and its antioxidant activity was stable at $30-50^{\circ}C$ in acidic and neutral pH. Thus, these results revealed that P4-1 may be a potential resource as a natural antioxidant.

Separation of H2 and N2 Gases by PTMSP-NaA Zeolite Composite Membranes (PTMSP-NaA Zeolite 복합막에 의한 수소-질소 기체 분리에 관한 연구)

  • Kim, Ok-Su;Yun, Seok Il
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.107-114
    • /
    • 2015
  • PTMSP-NaA zeolite composite membranes were prepared by adding 0~50 wt% NaA zeolite to PTMSP. The membranes were characterized by FT-IR, $^1H$-NMR, GPC, DSC, TGA, SEM. The permeabilities of $H_2$ and $N_2$ gases through PTMSP-NaA zeolite composite membranes was studied as a function of NaA zeolite contents. According to TGA measurements, when zeolite was inserted into the polymer, weight loss temperature and weight loss wt% of PTMSP-NaA zeolite composite membranes were decreased. Based on SEM observation, NaA zeolite was dispersed in the PTMSP-NaA zeolite composite membrane with the size $2{\sim}5{\mu}m$. The permeability of PTMSP-NaA zeolite composite membranes increased added as NaA zeolite content increased. On the contrary, the selectivity ($H_2/N_2$) of the composite membranes decreased as NaA zeolite content increased. PTMSP-NaA zeolite composite membrane showed better permeability and selectivity ($H_2/N_2$) of $H_2$ and $N_2$ than PTMSP-NaY zeolite composite membrane.

Separation of Hydrogen-Nitrogen Gases by PTMSP-Borosilicate Composite Membranes (PTMSP-Borosilicate 복합막에 의한 수소-질소 기체 분리에 관한 연구)

  • Lee, Suk Ho;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.438-447
    • /
    • 2014
  • The amorphous and porous borosilicate without any cracks was obtained under the following condition : 0.01~ 0.10 mole ratio of trimethylborate (TMB)/ tetraethylorthosilicate (TEOS) and the temperature of $700{\sim}800^{\circ}C$. According to the BET and SEM measurements, borosilicate heat-treated in between 700 and $800^{\circ}C$ showed the surface area of $251.12{\sim}355.62m^2/g$, the pore diameter of 3.5~4.9 nm, and the particle size of 30~60 nm. According to the TGA measurements, the thermal stability of poly[1-(trimethylsilyl)propyne](PTMSP) membrane was enhanced by inserting borosilicate. SEM observation showed that the size of dispersed borosilicate in the composite membrane was $1{\mu}m$. The results showed that the permeability of $H_2$ and $N_2$ increased and the selectivity of $H_2/N_2$ decreased upon the addition of borosilicate into PTMSP membranes. Addition of borosilicate may possibly increase the free volume, cavity and porosity of membranes indicating that permeation occurred by molecular sieving, surface and Knudsen diffusion rather than solution diffusion of gases.

Adsorption of Ni(II), Co(II), and Mg(II) from Sulfuric Acid Solution by Diphonix Resin for the Utilization of Laterite Ore (라테라이트광 활용을 위한 황산용액에서 Diphonix 수지의 니켈, 코발트, 마그네슘 흡착)

  • Lee, Man-Seung;Kim, Sang-Bae;Chae, Jong-Gwee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.183-189
    • /
    • 2010
  • It is of importance to separate Ni(II) and Co(II) from Mg(II) in solution which was leached from nickel laterite ore. In order to investigate the possibility of separating Ni(II) and Co(II) from Mg(II), adsorption behavior of the three metals from individual and mixed sulfate solutions was investigated by using Diphonix resin. The concentration of each metal in solution was fixed at 100 ppm and the pH of the sulfuric acid solution was changed from 5 to 7. At ambient temperature, the adsorption behavior of the three metal ions followed Langmuir adsorption isotherm. The loading capacity of Diphonix resin for the three metal ions was obtained from the Langmuir isotherm. Since adsorption behavior of the three metal ions from the mixed solution was similar to each other, it was found to be difficult to separate Ni(II) and Co(II) from Mg(II) by using Diphonix resin.

Synthesis, Characterization and Functionalization of the Coated Iron Oxide Nanostructures

  • Tursunkulov, Oybek;Allabergenov, Bunyod;Abidov, Amir;Jeong, Soon-Wook;Kim, Sungjin
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • The iron oxides nanoparticles and iron oxide with other compounds are of importance in fields including biomedicine, clinical and bio-sensing applications, corrosion resistance, and magnetic properties of materials, catalyst, and geochemical processes etc. In this work we describe the preparation and investigation of the properties of coated magnetic nanoparticles consisting of the iron oxide core and organic modification of the residue. These fine iron oxide nanoparticles were prepared in air environment by the co-precipitation method using of $Fe^{2+}$: $Fe^{3+}$ where chemical precipitation was achieved by adding ammonia aqueous solution with vigorous stirring. During the synthesis of nanoparticles with a narrow size distribution, the techniques of separation and powdering of nanoparticles into rather monodisperse fractions are observed. This is done using controlled precipitation of particles from surfactant stabilized solutions in the form organic components. It is desirable to maintain the particle size within pH range, temperature, solution ratio wherein the particle growth is held at a minimum. The iron oxide nanoparticles can be well dispersed in an aqueous solution were prepared by the mentioned co-precipitation method. Besides the iron oxide nanowires were prepared by using similar method. These iron oxide nanoparticles and nanowires have controlled average size and the obtained products were investigated by X-ray diffraction, FESEM and other methods.

The Preparation of Phosphor Screen for Video Phone Tube by Screen Printing Method (Screen Printing법에 의한 Video Phone Tube용 형광막 제조)

  • Lee Mi-Young;Lee Jong-Wook;Kim Young-Bae;Nam Su-Yong;Lee Sang-Nam;Moon Myung-Jun
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.801-810
    • /
    • 2005
  • The phosphor and ITO(Indium Tin Oxide) films for video phone tube (VPT) were simply prepared by the screen printing and thermal transfer methods. The increasing order of thermal firing of acrylic binder for phosphor and ITO was M6003 < M6664 < A/A 1919 < M500l < M670 1 and all mass of binders were perfectly decomposed at lower temperature than $400^{\circ}C.$ After thermal firing of phosphor paste, the residual of binder on the surface of phosphor could not be found by SEM. Aerosil as thickner provides the thixotropy property for phosphor paste but decrease the brightness of phosphor screen as residual after thermal firing. Since the thixotropy of M5001 binder without aerosil was shown and the storage modulus of phosphor paste by increasing the angular frequency was not nearly changed and the decrease of the storage modulus of phosphor paste by increasing the strain was remarkably shown. It was possible to prepare the phosphor paste which was predominant in the plate separation and the reproduction of pattern after the screen printing. Since the addition of dispersing agent to improve the printing process decreases the electrical conductivity and light transmission of ITa film, it could be found to be necessary the development of binder for phosphor paste that decreases the amount of dispersing agent possibly and does not use the aerosil as additive.

A Study on Combustion and Heat Transfer in Premixed Impinging Flames of Syngas(H2/CO)/Air Part II: Heat Transfer Characteristics (합성가스(H2/CO)/공기 예혼합 충돌화염의 연소 및 열전달 연구 Part II : 열전달 특성)

  • Sim, Keunseon;Jeong, Byeonggyu;Lee, Yongho;Lee, Keeman
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.1
    • /
    • pp.59-71
    • /
    • 2014
  • An experimental study has been conducted to investigate the heat transfer characteristics of laminar syngas/air mixture with 10% hydrogen content impinging normally to a flat plate of cylinder. Effects of impinging distance, Reynolds number and equivalence ratio as major parameters on heat fluxes of stagnation point and radial direction were examined experimentally by the direct photos and data acquisitions from heat flux sensor. In this work, we could find the incurved flame behavior of line shaped inner top-flame in very closed distance between flat plate and burner exit, which has been not reported from general gas-fuels. There were 3 times of maximum and 2 times minimum heat flux of stagnation point with respect to the impinging distance for the investigation of Reynolds number and equivalence ratio effect. It was confirmed that the maximum heat flux of stagnation point in 1'st and 2'nd peaks increased with the increase of the Reynolds number due to the Nusselt number increment. There was a third maximum rise in the heat flux of stagnation point for larger separation distances and this phenomenon was different each for laminar and turbulent condition. The heat transfer characteristics between the stagnation and wall jet region in radial heat flux profiles was investigated by the averaged heat flux value. It has been observed that the values of averaged heat flux traced well with the characteristics of major parameters and the decreasing of averaged heat flux was coincided with the decreasing trend of adiabatic temperature in spite of the same flow condition, especially for impinging distance and equivalence ratio effects.

Preparation and Characteristic of Sheet Molding Compound using Unsaturated Polyester Resin with Low Profile Agent of Polystyrene (저수축제 폴리스틸렌과 불포화 폴리에스터 수지를 사용한 Sheet Molding Compound 제조 및 특성)

  • Bae, Gi Boong;Lee, Sang Goo;Yoon, Hong Jin;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.588-593
    • /
    • 2012
  • Compatibility of unsaturated polyester (UP) and low profile agent (LPA) of polystyrene (PS) have been investigated under various mixing conditions such as the ratio of UP and LPA, mixing time, mixing temperature, and input amount of 2nd UP. It was possible to obtain mixture with small particle size and low phase separation in condition of 35 g of LPA, 25 g of 1st UP input, 5 min of mixing time, 1700 rpm of mixing speed, and 45 g of 2nd UP input. It was found that compatibility of UP and LPA was very sensitive to mixing conditions. In addition, molded sample using sheet molding compound prepared by stable mixing condition appeared good properties such as low water adsorption, low shrinkage, and high gloss.